<div class="csl-bib-body">
<div class="csl-entry">Bögl, M., Aigner, W., Filzmoser, P., Lammarsch, T., Miksch, S., & Rind, A. (2013). Visual Analytics for Model Selection in Time Series Analysis. <i>IEEE Transactions on Visualization and Computer Graphics</i>, <i>19</i>(12), 2237–2246. https://doi.org/10.1109/tvcg.2013.222</div>
</div>
-
dc.identifier.issn
1077-2626
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/155272
-
dc.description.abstract
Model selection in time series analysis is a challenging task for domain experts in many application areas such as epidemiology, economy, or environmental sciences. The methodology used for this task demands a close combination of human judgement and automated computation. However, statistical software tools do not adequately support this combination through interactive visual interfaces. We propose a Visual Analytics process to guide domain experts in this task. For this purpose, we developed the TiMoVA prototype that implements this process based on user stories and iterative expert feedback on user experience. The prototype was evaluated by usage scenarios with an example dataset from epidemiology and interviews with two external domain experts in statistics. The insights from the experts' feedback and the usage scenarios show that TiMoVA is able to support domain experts in model selection tasks through interactive visual interfaces with short feedback cycles.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
Institute of Electrical and Electronics Engineers (IEEE)
-
dc.relation.ispartof
IEEE Transactions on Visualization and Computer Graphics
-
dc.subject
Software
-
dc.subject
Visual analytics
-
dc.subject
time series analysis
-
dc.subject
Computer Graphics and Computer-Aided Design
-
dc.subject
model selection
-
dc.subject
Computer Vision and Pattern Recognition
-
dc.subject
Signal Processing
-
dc.subject
coordinated &
-
dc.subject
multiple views
-
dc.subject
visual interaction
-
dc.title
Visual Analytics for Model Selection in Time Series Analysis
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
2237
-
dc.description.endpage
2246
-
dc.type.category
Original Research Article
-
tuw.container.volume
19
-
tuw.container.issue
12
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
CVAST: Centre for Visual Analytics Science and Technology (Laura Bassi Centre of Expertise)
-
tuw.project.title
HypoVis: Modeling Hypotheses with Visual Analytics Methods to Analyze the Past and Forecast the Future
-
tuw.researchTopic.id
I6
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Business Informatics
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
dcterms.isPartOf.title
IEEE Transactions on Visualization and Computer Graphics