DC FieldValueLanguage
dc.contributor.advisorAuzinger, Winfried-
dc.contributor.authorBrunner, Maximilian-
dc.date.accessioned2020-09-22T06:56:11Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.citation<div class="csl-bib-body"> <div class="csl-entry">Brunner, M. (2020). <i>Local error analysis for generalised splitting methods</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.61061</div> </div>-
dc.identifier.urihttps://doi.org/10.34726/hss.2020.61061-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/15620-
dc.descriptionAbweichender Titel nach Übersetzung der Verfasserin/des Verfassers-
dc.description.abstractThis thesis introduces the basic theory of splitting methods for evolution equations. A symmetrised version of the defect is discussed and the defect is established as an asymptotically correct local error estimator. The general background for high order splitting such as the Baker-Campbell-Hausdorff formula and symmetrised versions there of are treated and order conditions for high order splittings are extracted. In particular, we take a closer look at skew-hermitian matrices. In addition, we cover a 'dual' approach - the Zassenhaus splitting - and discuss the main ingredients Magnus provided for the analysis of the Zassenhaus splitting. A symmetrisation of Magnus' approach is made. Next, we introduce inner symmetrised defects and elaborate on its Taylor expansion. This is the key component to the more basic approach. We focus on the error expansion of the Strang splitting - our basic case of the more general Zassenhaus type setting. The systematic treatment of the general case offers ideas for further generalisations and provides a basis for a good understanding of the high level theory results. It is based on the Faà di Bruno identity and Bell polynomials play a key role when generalising the Lie expansion formula. We use Feynman diagrams for a compact and clear picture of the derivatives we will encounter. In the end, we have successfully recovered the order condition previously seen in the BCH formula by using the Taylor approach. We will conclude the thesis with an application of the order conditions to a physical problem.en
dc.format50 Seiten-
dc.languageEnglish-
dc.language.isoen-
dc.subjectEvolutionsgleichungende
dc.subjectSplittingde
dc.subjectFehleranalysede
dc.subjectevolution equationsen
dc.subjectsplittingen
dc.subjecterror analysisen
dc.titleLocal error analysis for generalised splitting methodsen
dc.title.alternativeLokale Fehleranalyse für verallgemeinerte Splitting-Verfahrende
dc.typeThesisen
dc.typeHochschulschriftde
dc.identifier.doi10.34726/hss.2020.61061-
dc.publisher.placeWien-
tuw.thesisinformationTechnische Universität Wien-
tuw.publication.orgunitE101 - Institut für Analysis und Scientific Computing-
dc.type.qualificationlevelDiploma-
dc.identifier.libraryidAC15753149-
dc.description.numberOfPages50-
dc.thesistypeDiplomarbeitde
dc.thesistypeDiploma Thesisen
item.languageiso639-1en-
item.fulltextwith Fulltext-
item.openaccessfulltextOpen Access-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
Appears in Collections:Thesis

Files in this item:


Page view(s)

23
checked on Aug 17, 2021

Download(s)

47
checked on Aug 17, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.