<div class="csl-bib-body">
<div class="csl-entry">Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2020). Gershgorin Loss Stabilizes the Recurrent Neural Network Compartment of an End-to-end Robot Learning Scheme. In <i>2020 IEEE International Conference on Robotics and Automation (ICRA)</i>. IEEE. https://doi.org/10.34726/242</div>
</div>
Traditional robotic control suits require profound task-specific knowledge for designing, building and testing control software. The rise of Deep Learning has enabled end-to-end solutions to be learned entirely from data, requiring minimal knowledge about the application area. We design a learning scheme to train end-to-end linear dynamical systems (LDS)s by gradient descent in imitation learning robotic domains. We introduce a new regularization loss component together with a learning algorithm that improves the stability of the learned autonomous system, by forcing the eigenvalues of the internal state updates of an LDS to be negative reals. We evaluate our approach on a series of real-life and simulated robotic experiments, in comparison to linear and nonlinear Recurrent Neural Network (RNN) architectures. Our results show that our stabilizing method significantly improves test performance of LDS, enabling such linear models to match the performance of contemporary nonlinear RNN architectures. A video of the obstacle avoidance performance of our method on a mobile robot, in unseen environments, compared to other methods can be viewed at https://youtu.be/mhEsCoNao5E.
en
dc.description.sponsorship
M.L. is supported in parts by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). R.H., and R.G. are partially supported by the Horizon-2020 ECSEL Project grant No. 783163 (iDev40), and the Austrian Research Promotion Agency (FFG), Project No. 860424. R.H. and D.R. is partially supported by the Boeing Company.
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
dynamical systems
en
dc.subject
Robot Learning
en
dc.subject
Continuous-time recurrent neural networks
en
dc.subject
Deep Learning
en
dc.subject
Machine Learning
en
dc.subject
Artificial Intelligence
en
dc.subject
neural networks
en
dc.title
Gershgorin Loss Stabilizes the Recurrent Neural Network Compartment of an End-to-end Robot Learning Scheme
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/242
-
dc.contributor.affiliation
Institute of Science and Technology Austria, Austria
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.relation.isbn
978-1-7281-7395-5
-
dc.relation.doi
10.1109/ICRA40945.2020
-
dc.relation.issn
2577-087X
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2020 IEEE International Conference on Robotics and Automation (ICRA)
-
tuw.container.volume
2020
-
tuw.book.ispartofseries
IEEE International Conference on Robotics and Automation
-
tuw.relation.publisher
IEEE
-
tuw.version
am
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/ICRA40945.2020.9196608
-
dc.identifier.libraryid
AC17204828
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-9889-5222
-
tuw.author.orcid
0000-0001-5715-2142
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Massachusetts Institute of Technology
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems