<div class="csl-bib-body">
<div class="csl-entry">Kaczvinszki, M. F. (2020). <i>Many-body feedback cooling : particle manipulation through far-field wavefront shaping</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.82731</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2020.82731
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/15644
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
In this thesis a new way of cooling dielectric particles with optical forces will be presented. Without tracking particle positions, the collective motion inside a system gets monitored from the far-field by measuring the time evolution of the system's scattering matrix. This information alone enables us to shape the input field, so that its interaction with the particles counteracts or enhances their motion optimally. We formulate an underlying theory based on a scalar field approximation of the electromagnetic field. The particle positions serve as an optical potential for the field and resulting field configurations generate forces upon the particles in the direction of higher field intensity. The macroscopic kinetic energy change of the particle system is connected with changes in the scattering matrix, encoded in a new linear operator, which provides optimal cooling states through solving a simple eigenvalue problem. We test the field-matter interactions in simulations using a 2D-multimode waveguide. The influence of randomized as well as of constant input fields on the particle motion will be compared to the strongly damped motion, induced by the optimal cooling states. We characterize our cooling procedure by increasing the particle number, starting with a single particle. We confirm the robustness of our method by testing it on a ten particle system for challenging scenarios, like incomplete far-field information, absorption and complex particle geometries. In addition, simulations with realistic values are made and results are compared with existing cooling approaches in the mesoscopic regime.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Optomechanik
de
dc.subject
Kühlung
de
dc.subject
Wellenkontrolle
de
dc.subject
Opto-mechanics
en
dc.subject
cooling
en
dc.subject
wave front shaping
en
dc.title
Many-body feedback cooling : particle manipulation through far-field wavefront shaping
en
dc.title.alternative
Feedback-Kühlung von mehreren Teilchen
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2020.82731
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Markus Fabian Kaczvinszki
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Bachelard, Nicolas
-
tuw.publication.orgunit
E136 - Institut für Theoretische Physik
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC15755296
-
dc.description.numberOfPages
93
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-4123-1417
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E322-01 - Forschungsbereich Strömungsmechanik
-
crisitem.author.parentorg
E322 - Institut für Strömungsmechanik und Wärmeübertragung