DC FieldValueLanguage
dc.contributor.advisorRotter, Stefan-
dc.contributor.authorKaczvinszki, Markus Fabian-
dc.date.accessioned2020-09-24T06:51:31Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://doi.org/10.34726/hss.2020.82731-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/15644-
dc.descriptionArbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft-
dc.descriptionAbweichender Titel nach Übersetzung der Verfasserin/des Verfassers-
dc.description.abstractIn this thesis a new way of cooling dielectric particles with optical forces will be presented. Without tracking particle positions, the collective motion inside a system gets monitored from the far-field by measuring the time evolution of the system's scattering matrix. This information alone enables us to shape the input field, so that its interaction with the particles counteracts or enhances their motion optimally. We formulate an underlying theory based on a scalar field approximation of the electromagnetic field. The particle positions serve as an optical potential for the field and resulting field configurations generate forces upon the particles in the direction of higher field intensity. The macroscopic kinetic energy change of the particle system is connected with changes in the scattering matrix, encoded in a new linear operator, which provides optimal cooling states through solving a simple eigenvalue problem. We test the field-matter interactions in simulations using a 2D-multimode waveguide. The influence of randomized as well as of constant input fields on the particle motion will be compared to the strongly damped motion, induced by the optimal cooling states. We characterize our cooling procedure by increasing the particle number, starting with a single particle. We confirm the robustness of our method by testing it on a ten particle system for challenging scenarios, like incomplete far-field information, absorption and complex particle geometries. In addition, simulations with realistic values are made and results are compared with existing cooling approaches in the mesoscopic regime.en
dc.format93 Seiten-
dc.languageEnglish-
dc.language.isoen-
dc.subjectOptomechanikde
dc.subjectKühlungde
dc.subjectWellenkontrollede
dc.subjectOpto-mechanicsen
dc.subjectcoolingen
dc.subjectwave front shapingen
dc.titleMany-body feedback coolingen
dc.title.alternativeFeedback-Kühlung von mehreren Teilchende
dc.typeThesisen
dc.typeHochschulschriftde
dc.identifier.doi10.34726/hss.2020.82731-
dc.publisher.placeWien-
tuw.thesisinformationTechnische Universität Wien-
dc.contributor.assistantBachelard, Nicolas-
tuw.publication.orgunitE136 - Institut für Theoretische Physik-
dc.type.qualificationlevelDiploma-
dc.identifier.libraryidAC15755296-
dc.description.numberOfPages93-
dc.thesistypeDiplomarbeitde
dc.thesistypeDiploma Thesisen
item.fulltextwith Fulltext-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Thesis

Files in this item:

Show simple item record

Page view(s)

32
checked on Feb 23, 2021

Download(s)

30
checked on Feb 23, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.