<div class="csl-bib-body">
<div class="csl-entry">Bruckner, F., Süss, D., Feischl, M., Führer, T., Goldenits, P., Page, M., Praetorius, D., & Ruggeri, M. (2014). Multiscale modeling in micromagnetics: Existence of solutions and numerical integration. <i>Mathematical Models and Methods in Applied Sciences</i>, <i>24</i>(13), 2627–2662. https://doi.org/10.1142/s0218202514500328</div>
</div>
-
dc.identifier.issn
0218-2025
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/156460
-
dc.description.abstract
Various applications ranging from spintronic devices, giant magnetoresistance
(GMR) sensors, and magnetic storage devices, include magnetic parts on very
different length scales. Since the consideration of the Landau-Lifshitz-Gilbert equation
(LLG) constrains the maximum element size to the exchange length within the media,
it is numerically not attractive to simulate macroscopic parts with this approach. On
the other hand, the magnetostatic Maxwell equations do not constrain the element size,
but therefore cannot describe the short-range exchange interaction accurately. A combination
of both methods allows to describe magnetic domains within the micromagnetic
regime by use of LLG and also considers the macroscopic parts by a nonlinear material
law using Maxwell's equations. In our work, we prove that under certain assumptions on
the nonlinear material law, this multiscale version of LLG admits weak solutions. Our
proof is constructive in the sense that we provide a linear-implicit numerical integrator
for the multiscale model such that the numerically computable finite element solutions
admit weak H1-convergence -at least for a subsequence- towards a weak solution
en
dc.language.iso
en
-
dc.publisher
WORLD SCIENTIFIC PUBL CO PTE LTD
-
dc.relation.ispartof
Mathematical Models and Methods in Applied Sciences
-
dc.subject
Applied Mathematics
-
dc.subject
Modeling and Simulation
-
dc.subject
FEM-BEM coupling
-
dc.subject
Micromagnetism
-
dc.subject
Landau-Lifshitz-Gilbert equation
-
dc.subject
multiscale modeling
-
dc.subject
convergence analysis
-
dc.title
Multiscale modeling in micromagnetics: Existence of solutions and numerical integration
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
2627
-
dc.description.endpage
2662
-
dc.type.category
Original Research Article
-
tuw.container.volume
24
-
tuw.container.issue
13
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
80
-
tuw.researchTopic.value
20
-
dcterms.isPartOf.title
Mathematical Models and Methods in Applied Sciences
-
tuw.publication.orgunit
E138-03 - Forschungsbereich Functional and Magnetic Materials
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publication.orgunit
E138-05 - Forschungsbereich Solid State Spectroscopy
-
tuw.publisher.doi
10.1142/s0218202514500328
-
dc.identifier.eissn
1793-6314
-
dc.description.numberOfPages
36
-
tuw.author.orcid
0000-0002-1977-9830
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E138 - Institut für Festkörperphysik
-
crisitem.author.dept
E138 - Institut für Festkörperphysik
-
crisitem.author.dept
E101-02-3 - Forschungsgruppe Computational PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing