<div class="csl-bib-body">
<div class="csl-entry">Ivaki, M. N. (2014). Centro-affine curvature flows on centrally symmetric convex curves. <i>Transactions of the American Mathematical Society</i>, <i>366</i>(11), 5671–5692. https://doi.org/10.1090/S0002-9947-2014-05928-X</div>
</div>
-
dc.identifier.issn
0002-9947
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/156855
-
dc.description.abstract
We consider two types of p-centro-affine flows on smooth, centrally symmetric, closed convex planar curves: p-contracting and p-expanding. Here p is an arbitrary real number greater than 1. We show that, under any p-contracting flow, the evolving curves shrink to a point in finite time and the only homothetic solutions of the flow are ellipses centered at the origin. Furthermore, the normalized curves with enclosed area π converge, in the Hausdorff metric, to the unit circle modulo SL(2). As a p-expanding flow is, in a certain way, dual to a contracting one, we prove that, under any p-expanding flow, curves expand to infinity in finite time, while the only homothetic solutions of the flow are ellipses centered at the origin. If the curves are normalized to enclose constant area π, they display the same asymptotic behavior as the first type flow and converge, in the Hausdorff metric, and up to SL(2) transformations, to the unit circle. At the end of the paper, we present a new proof of the p-affine isoperimetric inequality, p≥1, for smooth, centrally symmetric convex bodies in ℝ².
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.relation.ispartof
Transactions of the American Mathematical Society
-
dc.subject
Centro-affine normal flow
en
dc.subject
Centro-affine curvature flow
en
dc.title
Centro-affine curvature flows on centrally symmetric convex curves
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Concordia University, Canada
-
dc.description.startpage
5671
-
dc.description.endpage
5692
-
dc.relation.grantno
P25515-N25
-
dc.type.category
Original Research Article
-
tuw.container.volume
366
-
tuw.container.issue
11
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Valuations on Function Spaces
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Transactions of the American Mathematical Society
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.1090/S0002-9947-2014-05928-X
-
dc.identifier.eissn
1088-6850
-
dc.description.numberOfPages
22
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.orcid
0000-0001-7540-7268
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)