<div class="csl-bib-body">
<div class="csl-entry">Kniefacz, P. (2017). <i>Otto calculus or the weak Riemannian strucutre of (P2(M),W2)</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2017.25504</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2017.25504
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/1578
-
dc.description.abstract
We analyze the first order and second order differential structure of the space of probability measures with finite second moment on a Riemannian manifold endowed with the quadratic Wasserstein distance. After providing basics of Riemannian geometry, absolutely continuous curves and optimal transportation theory, we construct the so called weak Riemannian structure. Through the continuity equation we are able to define a suitable tangent space and to show the famous Benamou-Brenier formula. We then are able to associate to each absolutely continuous curve of measures a unique velocity vector field, lying in this tangent bundle. Afterwards we provide an alternative way of construction of a parallel transport in Euclidean space, by considering a submanifold of R n and showing certain Lipschitz bounds for the angle between the tangent spaces of two points on this submanifold. By mimicking the results of the Euclidean case, we show the existence and uniqueness of a parallel transport in the Wasserstein setting. In the course of this construction, we define transportation maps, that allow us to map tangent vectors from one tangent space to another. They will also provide us with the analogous Lipschitz bounds as in the Euclidean case. Finally, we use the parallel transport to define the Wasserstein analogon of the Levi-Civita connection.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Otto Calculus
en
dc.subject
Riemannian Geometry
en
dc.subject
Wasserstein Space
en
dc.subject
Measure
en
dc.title
Otto calculus or the weak Riemannian strucutre of (P2(M),W2)
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2017.25504
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Philipp Kniefacz
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Maresch, Gabriel
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC13674216
-
dc.description.numberOfPages
69
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-96928
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
tuw.author.orcid
0000-0002-2617-3896
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-7389-6720
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.cerifentitytype
Publications
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie