<div class="csl-bib-body">
<div class="csl-entry">Pach, P. P., Pinsker, M., Pluhár, G., Pongrácz, A., & Szabó, C. (2014). Reducts of the random partial order. <i>Advances in Mathematics</i>, <i>267</i>, 94–120. https://doi.org/10.1016/j.aim.2014.08.008</div>
</div>
-
dc.identifier.issn
0001-8708
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/157987
-
dc.description.abstract
We determine, up to the equivalence of first-order interdefinability, all structures which are first-order definable in the random partial order. It turns out that there are precisely five such structures. We achieve this result by showing that there exist exactly five closed permutation groups which contain the automorphism group of the random partial order, and thus expose all symmetries of this structure. Our result lines up with previous similar classifications for the random graph and the order of the rationals; it also provides further evidence for a conjecture due to Simon Thomas which states that the number of structures definable in a homogeneous structure in a finite relational language is, up to first-order interdefinability, always finite. In the proof we use the new technique of “canonical functions” originally invented in the context of theoretical computer science, which allows for a systematic Ramsey-theoretic analysis of functions acting on the random partial order. The technique identifies patterns in arbitrary functions on the random partial order, which makes them accessible to finite combinatorial arguments.
en
dc.language.iso
en
-
dc.relation.ispartof
Advances in Mathematics
-
dc.subject
General Mathematics
en
dc.title
Reducts of the random partial order
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
94
-
dc.description.endpage
120
-
dc.type.category
Original Research Article
-
tuw.container.volume
267
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Advances in Mathematics
-
tuw.publication.orgunit
E192-05 - Forschungsbereich Theory and Logic
-
tuw.publisher.doi
10.1016/j.aim.2014.08.008
-
dc.date.onlinefirst
2014-12-20
-
dc.identifier.eissn
1090-2082
-
dc.description.numberOfPages
27
-
tuw.author.orcid
0000-0002-4625-4650
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-01 - Forschungsbereich Algebra
-
crisitem.author.orcid
0000-0002-4625-4650
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie