<div class="csl-bib-body">
<div class="csl-entry">Tonejca, L., Mauthner, G., Trautner, T., Koenig, V., & Liemberger, W. (2023). AI-Based Surface Roughness Prediction Model for Automated CAM-Planning Optimization. In <i>Proceedings 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA)</i> (pp. 1–4). IEEE. https://doi.org/10.1109/ETFA52439.2022.9921281</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/158201
-
dc.description.abstract
Currently, there are no commercial software systems to support the achievement of predefined surface roughness for newly machined parts. Computer Aided Manufacturing (CAM) programmers and machine operators rely on their experience to find the best trade-off between time and quality optimization.This paper presents a novel concept for predicting surface roughness based on real-time machining data, planning data, and quality measurements. By linking the data points of all the different sources to the respective manufacturing feature, like drilling or face milling, the data cleaning process is sped up significantly facilitating queries of machine learning applications.On the one hand, the relations derived from that machine learning model, e.g. a random forest, are integrated into a CAM planning software for parameter evaluation and automatic tool path optimization. On the other hand, the proposed surface roughness prediction algorithm is used in a live simulation to give machine operators immediate visual feedback on the produced finish to enhance precise feed rate adaption. Hence, a data-driven decision support system is to be developed which supports both inexperienced and experienced personnel at the planning and execution phase within the product life cycle.
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
CAM planning optimization
en
dc.subject
digital twin
en
dc.subject
machine learning
en
dc.subject
smart manufacturing
en
dc.subject
surface roughness prediction
en
dc.title
AI-Based Surface Roughness Prediction Model for Automated CAM-Planning Optimization
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
ModuleWorks GmbH, Aachen, Germany
-
dc.contributor.affiliation
Craftworks GmbH, Vienna, Austria
-
dc.relation.isbn
978-1-6654-9996-5
-
dc.relation.doi
10.1109/ETFA52439.2022
-
dc.description.startpage
1
-
dc.description.endpage
4
-
dc.relation.grantno
FO999891268
-
dcterms.dateSubmitted
2022
-
dc.type.category
Poster Contribution
-
tuw.booktitle
Proceedings 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA)
-
tuw.container.volume
2022-September
-
tuw.relation.publisher
IEEE
-
tuw.project.title
Development of Self-Learning NC-Programming System for Data-Driven Surface Prediction and Adaptive Cutting Parameter Optimization
-
tuw.researchTopic.id
I6a
-
tuw.researchTopic.id
E5
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.name
Efficient Utilisation of Material Resources
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
20
-
tuw.linking
https://ieeexplore.ieee.org/document/9921281
-
tuw.publication.orgunit
E311-01-3 - Forschungsgruppe Steuerungstechnik und integrierte Systeme
-
tuw.publisher.doi
10.1109/ETFA52439.2022.9921281
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0003-0634-4616
-
tuw.event.name
2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA 2022)
en
tuw.event.startdate
06-09-2022
-
tuw.event.enddate
09-09-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Stuttgart
-
tuw.event.country
DE
-
tuw.event.institution
University of Stuttgart
-
tuw.event.presenter
Tonejca, Lea
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Werkstofftechnik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
2050
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
crisitem.project.grantno
FO999891268
-
crisitem.author.dept
E311-01-3 - Forschungsgruppe Steuerungstechnik und integrierte Systeme
-
crisitem.author.dept
E311-01-3 - Forschungsgruppe Steuerungstechnik und integrierte Systeme
-
crisitem.author.dept
E311-01-3 - Forschungsgruppe Steuerungstechnik und integrierte Systeme