<div class="csl-bib-body">
<div class="csl-entry">Avalos Pacheco, A., Ventz, S., Arfè, A., Alexander, B. M., Rahman, R., Wen, P. Y., & trippa, lorenzo. (2023). Validation of Predictive Analyses for Interim Decisions in Clinical Trials. <i>JCO Precision Oncology</i>, <i>7</i>, Article e2200606. https://doi.org/10.1200/PO.22.00606</div>
</div>
-
dc.identifier.issn
2473-4284
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/158284
-
dc.description.abstract
PURPOSE
Adaptive clinical trials use algorithms to predict, during the study, patient outcomes and final study results. These predictions trigger interim decisions, such as early discontinuation of the trial, and can change the course of the study. Poor selection of the Prediction Analyses and Interim Decisions (PAID) plan in an adaptive clinical trial can have negative consequences, including the risk of exposing patients to ineffective or toxic treatments.
METHODS
We present an approach that leverages data sets from completed trials to evaluate and compare candidate PAIDs using interpretable validation metrics. The goal is to determine whether and how to incorporate predictions into major interim decisions in a clinical trial. Candidate PAIDs can differ in several aspects, such as the prediction models used, timing of interim analyses, and potential use of external data sets. To illustrate our approach, we considered a randomized clinical trial in glioblastoma. The study design includes interim futility analyses on the basis of the predictive probability that the final analysis, at the completion of the study, will provide significant evidence of treatment effects. We examined various PAIDs with different levels of complexity to investigate if the use of biomarkers, external data, or novel algorithms improved interim decisions in the glioblastoma clinical trial.
RESULTS
Validation analyses on the basis of completed trials and electronic health records support the selection of algorithms, predictive models, and other aspects of PAIDs for use in adaptive clinical trials. By contrast, PAID evaluations on the basis of arbitrarily defined ad hoc simulation scenarios, which are not tailored to previous clinical data and experience, tend to overvalue complex prediction procedures and produce poor estimates of trial operating characteristics such as power and the number of enrolled patients.
CONCLUSION
Validation analyses on the basis of completed trials and real world data support the selection of predictive models, interim analysis rules, and other aspects of PAIDs in future clinical trials.
en
dc.language.iso
en
-
dc.publisher
AMER SOC CLINICAL ONCOLOGY
-
dc.relation.ispartof
JCO Precision Oncology
-
dc.subject
Statistics
en
dc.subject
Experimental Design
en
dc.subject
Bayesian Statistics
en
dc.subject
Prediction Models
en
dc.subject
Validation of a prediction model
en
dc.title
Validation of Predictive Analyses for Interim Decisions in Clinical Trials
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.pmid
36848613
-
dc.contributor.affiliation
University of Minnesota, United States of America (the)
-
dc.contributor.affiliation
Memorial Sloan Kettering Cancer Center, United States of America (the)
-
dc.contributor.affiliation
Dana-Farber Cancer Institute, United States of America (the)
-
dc.contributor.affiliation
Dana-Farber Cancer Institute, United States of America (the)
-
dc.contributor.affiliation
Dana-Farber Cancer Institute, United States of America (the)
-
dc.contributor.affiliation
Dana-Farber Cancer Institute, United States of America (the)
-
dc.type.category
Original Research Article
-
tuw.container.volume
7
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
JCO Precision Oncology
-
tuw.publication.orgunit
E105-08 - Forschungsbereich Angewandte Statistik
-
tuw.publisher.doi
10.1200/PO.22.00606
-
dc.date.onlinefirst
2023-02-27
-
dc.identifier.articleid
e2200606
-
dc.identifier.eissn
2473-4284
-
tuw.author.orcid
0000-0003-2229-9560
-
tuw.author.orcid
0000-0003-1534-0609
-
tuw.author.orcid
0000-0003-3903-9175
-
tuw.author.orcid
0000-0002-9443-1797
-
tuw.author.orcid
0000-0002-0774-7700
-
tuw.author.orcid
0000-0001-5218-5666
-
wb.sci
true
-
wb.sciencebranch
Neurowissenschaften
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
3014
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
70
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.dept
University of Minnesota
-
crisitem.author.dept
Memorial Sloan Kettering Cancer Center
-
crisitem.author.dept
Dana-Farber Cancer Institute
-
crisitem.author.dept
Dana-Farber Cancer Institute
-
crisitem.author.dept
Dana-Farber Cancer Institute
-
crisitem.author.dept
Dana-Farber Cancer Institute
-
crisitem.author.orcid
0000-0003-2229-9560
-
crisitem.author.orcid
0000-0003-1534-0609
-
crisitem.author.orcid
0000-0003-3903-9175
-
crisitem.author.orcid
0000-0002-9443-1797
-
crisitem.author.orcid
0000-0002-0774-7700
-
crisitem.author.orcid
0000-0001-5218-5666
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik