<div class="csl-bib-body">
<div class="csl-entry">Zulkower, V. (2011). <i>Comparison of gene network inference algorithms with ROC and PR analysis</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/161417</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/161417
-
dc.description.abstract
Understanding the network of interactions between the genes of a single cell would lead to considerable advances in biotechnologies.<br />Hundreds of methods have already been proposed in order to mine the data generated by time-series microarray experiments and infer the underlying gene interaction network, but none has yet reached an acceptable level of reliability, and none seems to prevail. In this thesis we propose a procedure to rigorously evaluate and compare these methods. We first focus the treatment of experimental data and the design of benchmarking experiments, then introduce ROC and PR analysis, and discuss the comparability of the network inference algorithms.<br />As an application we use a dataset from the BOKU Vienna to benchmark some algorithms proposed for the language R, in particular those relying on mutual information.<br />We show that the definition of a class of problems is a critical step for the comparative benchmarking of these algorithms.
en
dc.language
English
-
dc.language.iso
en
-
dc.subject
Biostatistik
de
dc.subject
E. coli
de
dc.subject
Inferenz genregulatorischer Netzwerke
de
dc.subject
ROC
de
dc.subject
PR
de
dc.subject
R
de
dc.subject
Gene network inference
en
dc.subject
E. coli
en
dc.subject
R
en
dc.subject
ROC analysis
en
dc.subject
PR analysis
en
dc.subject
Biostatistics
en
dc.title
Comparison of gene network inference algorithms with ROC and PR analysis
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.contributor.affiliation
TU Wien, Österreich
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Scharl, Theresa
-
tuw.publication.orgunit
E107 - Institut für Statistik und Wahrscheinlichkeitstherorie