<div class="csl-bib-body">
<div class="csl-entry">Knees, P., Ferraro, A., & Hübler, M. (2022). Bias and Feedback Loops in Music Recommendation: Studies on Record Label Impact. In H. Abdollahpouri, S. Sahebi, M. Elahi, M. Mansoury, B. Loni, Z. Nazari, & M. Dimakopoulou (Eds.), <i>MORS 2022. Proceedings of the 2nd Workshop on Multi-Objective Recommender Systems, co-located with 16th ACM Conference on Recommender Systems (RecSys 2022</i>. CEUR-WS.org. https://doi.org/10.34726/3723</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/161680
-
dc.identifier.uri
https://doi.org/10.34726/3723
-
dc.description.abstract
We investigate the dimension of record labels in music recommendation datasets and study their impact on recommender systems. While music recommender systems research traditionally focuses on dimensions and metadata such as artist or genre, other dimensions such as popularity and gender have recently drawn increased interest. We argue that also the role of record labels deserves consideration in this process. To study their effect, we present a multi-stage web crawling approach that retrieves record label information for individual albums as well as an assignment to a major record company (Universal, Sony, Warner, or Independent). Using this information, we augment existing datasets to enable further analyses. We present analyses of record label diversity on two datasets, namely the Spotify Million Playlist Dataset and the LFM-2b dataset using Last.fm listening profiles. Based on the additional information, we can show different characteristics and identify particular biases. Additionally, we present the results of first experiments with regard to feedback loop simulation and the stability of record label distribution in the recommendation process.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR workshop proceedings
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
bias
en
dc.subject
feedback loops
en
dc.subject
music recommender systems
en
dc.subject
music record labels
en
dc.title
Bias and Feedback Loops in Music Recommendation: Studies on Record Label Impact
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/3723
-
dc.contributor.affiliation
McGill University, Canada
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.editoraffiliation
Spotify, USA
-
dc.contributor.editoraffiliation
University at Albany, State University of New York, United States of America (the)
-
dc.contributor.editoraffiliation
Bergen Energi (Norway), Norway
-
dc.contributor.editoraffiliation
University of Amsterdam, Netherlands (the)
-
dc.contributor.editoraffiliation
Meta, the Netherlands
-
dc.contributor.editoraffiliation
Spotify, USA
-
dc.contributor.editoraffiliation
Spotify, USA
-
dc.relation.grantno
P 33526-N
-
dc.rights.holder
Peter Knees, Andres Ferraro, Moritz Hübler
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1613-0073
-
tuw.booktitle
MORS 2022. Proceedings of the 2nd Workshop on Multi-Objective Recommender Systems, co-located with 16th ACM Conference on Recommender Systems (RecSys 2022
-
tuw.container.volume
3268
-
tuw.book.ispartofseries
CEUR workshop proceedings
-
tuw.relation.publisher
CEUR-WS.org
-
tuw.project.title
Empfehlungssystem & Nutzer: Hin zu gegenseitigem Verständnis
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://nbn-resolving.org/urn:nbn:de:0074-3268-1
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.identifier.libraryid
AC17203057
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-3906-1292
-
tuw.author.orcid
0000-0003-1236-2503
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0002-8933-3279
-
tuw.editor.orcid
0000-0003-2203-9195
-
tuw.event.name
2nd Workshop on Multi-Objective Recommender Systems
en
tuw.event.startdate
18-09-2022
-
tuw.event.enddate
23-09-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Seattle, WA
-
tuw.event.country
US
-
tuw.event.presenter
Knees, Peter
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
McGill University
-
crisitem.author.dept
TU Wien
-
crisitem.author.orcid
0000-0003-3906-1292
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering