<div class="csl-bib-body">
<div class="csl-entry">Auzinger, W., & Lapinska, M. (2012). Convergence of rational multistep methods of Adams-Padé type. <i>BIT Numerical Mathematics</i>, <i>52</i>(1), 3–20. https://doi.org/10.1007/s10543-011-0353-1</div>
</div>
-
dc.identifier.issn
0006-3835
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/162185
-
dc.description.abstract
Rational generalizations of multistep schemes, where the linear stiff part of a given problem is treated by an A-stable rational approximation, have been proposed by several authors, but a reasonable
convergence analysis for stiff problems has not been provided so far. In this paper we directly relate this approach to exponential multistep methods, a subclass of the increasingly popular class of exponential integrators. This natural, but new interpretation of rational multistep methods enables us to prove a convergence result of the same quality as for the exponential version. In particular, we consider schemes of rational Adams type based on A-acceptable Padé approximations to the matrix exponential. A numerical example is also provided.
en
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
BIT Numerical Mathematics
-
dc.subject
Applied Mathematics
-
dc.subject
Software
-
dc.subject
Computational Mathematics
-
dc.subject
convergence
-
dc.subject
rational multistep schemes
-
dc.subject
stiff initial value problems
-
dc.subject
evolution equations
-
dc.subject
Adams schemes
-
dc.subject
Pad´e approximation
-
dc.subject
Computer Networks and Communications
-
dc.title
Convergence of rational multistep methods of Adams-Padé type
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Gdańsk University of Technology, Poland
-
dc.description.startpage
3
-
dc.description.endpage
20
-
dc.type.category
Original Research Article
-
tuw.container.volume
52
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
75
-
dcterms.isPartOf.title
BIT Numerical Mathematics
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1007/s10543-011-0353-1
-
dc.identifier.eissn
1572-9125
-
dc.description.numberOfPages
18
-
wb.sci
true
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch.oefos
11
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing