<div class="csl-bib-body">
<div class="csl-entry">Antlanger, M., Mayr-Schmölzer, W., Pavelec, J., Mittendorfer, F., Redinger, J., Varga, P., Diebold, U., & Schmid, M. (2012). Pt₃Zr(0001): A substrate for growing well-ordered ultrathin zirconia films by oxidation. <i>Physical Review B</i>, <i>86</i>(035451). https://doi.org/10.1103/physrevb.86.035451</div>
</div>
-
dc.identifier.issn
2469-9950
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/163811
-
dc.description.abstract
We have studied the surface of pure and oxidized Pt3Zr(0001) by scanning tunneling microscopy (STM), Auger electron microscopy, and density functional theory (DFT). The well-annealed alloy surface shows perfect long-range chemical order. Occasional domain boundaries are probably caused by nonstoichiometry. Pt3Zr exhibits ABAC stacking along [0001]; only the A-terminated surfaces are seen by STM, in agreement with DFT results showing a lower surface energy for the A termination. DFT further predicts a stronger inward relaxation of the surface Zr than for Pt, in spite of the larger atomic size of Zr. A closed ZrO2 film is obtained by oxidation in 10−7 mbar O2 at 400 ◦C and post-annealing at ≈800◦C. The oxide consists of an O-Zr-O trilayer,
equivalent to a (111) trilayer of the fluorite structure of cubic ZrO , but contracted laterally. The oxide forms a √√◦ 2
( 19 × 19)R23 superstructure. The first monolayer of the substrate consists of Pt and contracts, similar to the metastable reconstruction of pure Pt(111). DFT calculations show that the oxide trilayer binds rather weakly to the substrate. In spite of the O-terminated oxide, bonding to the substrate mainly occurs via the Zr atoms in the oxide, which strongly buckle down toward the Pt substrate atoms if near a Pt position. According to DFT, the oxide has a band gap; STM indicates that the conduction band minimum lies ≈2.3 eV above EF .
en
dc.language.iso
en
-
dc.publisher
AMER PHYSICAL SOC
-
dc.relation.ispartof
Physical Review B
-
dc.subject
Condensed Matter Physics
-
dc.subject
Electronic, Optical and Magnetic Materials
-
dc.title
Pt₃Zr(0001): A substrate for growing well-ordered ultrathin zirconia films by oxidation
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
86
-
tuw.container.issue
035451
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Physical Review B
-
tuw.publication.orgunit
E134-01 - Forschungsbereich Applied and Computational Physics
-
tuw.publication.orgunit
E134-05 - Forschungsbereich Surface Physics
-
tuw.publisher.doi
10.1103/physrevb.86.035451
-
dc.identifier.eissn
2469-9969
-
dc.description.numberOfPages
9
-
wb.sci
true
-
wb.sciencebranch
Physik, Mechanik, Astronomie
-
wb.sciencebranch.oefos
12
-
wb.facultyfocus
Physikalische Technologie
de
wb.facultyfocus
Physical Technology
en
wb.facultyfocus.faculty
E130
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E057-02 - Fachbereich Universitäre Serviceeinrichtung für Transmissions- Elektronenmikroskopie