<div class="csl-bib-body">
<div class="csl-entry">Schoisswohl, J. (2020). <i>Automated induction by reflection</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.75342</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2020.75342
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/16472
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Despite the advances in automated theorem proving in the last decades, making it practically feasible to reason about full first-order logic with interpreted equality and more, inductive reasoning still poses a serious challenge to state-of-the-art theorem provers. The reason for that is that in first-order logic induction requires an infinite number of axioms, which is not feasible as an input for a theorem prover that is a computer program, requiring a finite input. Mathematical practice is to specify these infinite sets of axioms as axiom schemes. Unfortunately these schematic definitions are not part of the syntax of first-order logic, and therefore not supported as an input for modern theorem provers.In this thesis we introduce a new method, inspired by the field of axiomatic theories of truth, that allows to the express schematic definitions needed for first-order induction, in the standard syntax of multi-sorted first-order logic. Further the practical feasibility of this method is tested with state-of-the-art theorem provers, by comparing it to solvers native techniques for handling induction.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
automated reasoning
en
dc.subject
first-order theorem proving
en
dc.subject
mathematical induction
en
dc.title
Automated induction by reflection
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2020.75342
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Johannes Schoisswohl
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16108258
-
dc.description.numberOfPages
57
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
tuw.author.orcid
0000-0001-5550-196X
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-8299-2714
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
master thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering