<div class="csl-bib-body">
<div class="csl-entry">Boubela, R. N., Huf, W., Kalcher, K., Sladky, R., Filzmoser, P., Pezawas, L., Kasper, S., Windischberger, C., & Moser, E. (2012). A highly parallelized framework for computationally intensive MR data analysis. <i>MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE</i>, <i>25</i>(4), 313–320. https://doi.org/10.1007/s10334-011-0290-7</div>
</div>
-
dc.identifier.issn
1352-8661
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/164819
-
dc.description.abstract
Object
The goal of this study was to develop a comprehensive magnetic resonance (MR) data analysis framework for handling very large datasets with user-friendly tools for parallelization and to provide an example implementation.
Materials and methods
Commonly used software packages (AFNI, FSL, SPM) were connected via a framework based on the free software environment R, with the possibility of using Nvidia CUDA GPU processing integrated for high-speed linear algebra operations in R. Three hundred single-subject datasets from the 1,000 Functional Connectomes project were used to demonstrate the capabilities of the framework.
Results
A framework for easy implementation of processing pipelines was developed and an R package for the example implementation of Fully Exploratory Network ICA was compiled. Test runs on data from 300 subjects demonstrated the computational advantages of a processing pipeline developed using the framework compared to non-parallelized processing, reducing computation time by a factor of 15.
Conclusion
The feasibility of computationally intensive exploratory analyses allows broader access to the tools for discovery science.
en
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE
-
dc.subject
Radiology, Nuclear Medicine and imaging
en
dc.subject
Biophysics
en
dc.subject
Radiological and Ultrasound Technology
en
dc.subject
Statistical computing
en
dc.subject
Magnetic Resonance Imaging (MRI)
en
dc.subject
High Performance Computing
en
dc.title
A highly parallelized framework for computationally intensive MR data analysis
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.description.startpage
313
-
dc.description.endpage
320
-
dcterms.dateSubmitted
2011-05-27
-
dc.type.category
Original Research Article
-
tuw.container.volume
25
-
tuw.container.issue
4
-
tuw.peerreviewed
false
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
dcterms.isPartOf.title
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE