<div class="csl-bib-body">
<div class="csl-entry">Reichl, I., Auzinger, W., Schmiedmayer, H.-B., & Weinmüller, E. (2010). Reconstructing the knee joint mechanism from kinematic data. <i>Mathematical and Computer Modelling of Dynamical Systems</i>, <i>16</i>(5), 403–415. https://doi.org/10.1080/13873954.2010.507094</div>
</div>
-
dc.identifier.issn
1387-3954
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/167060
-
dc.description.abstract
The interpretation of joint kinematics data in terms of displacements is a product of the type of movement, the measurement technique, and the underlying model of the joint implemented in optimization procedures. Kinematic constraints reducing the number of degrees of freedom (DoF) are expected to compensate for measurement errors and noise, thus, increasing the reproducibility of joint angles. One approach already successfully applied by several groups approximates
the healthy human knee joint as a compound hinge joint with minimal varus/valgus rotation. Most of these optimizations involve an orthogonality constraint. This contribution compares the effect of a model with and without orthogonality constraint on the obtained joint rotation angles. For this purpose kinematic data is simulated without noise and with normally distributed noise of varying size. For small noise the unconstrained model provides more accurate results while for larger noise this is the case for the constrained model. This can be attributed to the shape of the objective function of the unconstrained model near its minimum.
en
dc.language.iso
en
-
dc.publisher
TAYLOR & FRANCIS INC
-
dc.relation.ispartof
Mathematical and Computer Modelling of Dynamical Systems
-
dc.subject
Computer Science Applications
-
dc.subject
Control and Systems Engineering
-
dc.subject
Applied Mathematics
-
dc.subject
Modeling and Simulation
-
dc.subject
Software
-
dc.subject
tibiofemoral joint
-
dc.subject
kinematics
-
dc.subject
optimization
-
dc.subject
compound hinge joint
-
dc.subject
sensitivity analysis
-
dc.subject
model comparison
-
dc.title
Reconstructing the knee joint mechanism from kinematic data
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of Vienna, Austria
-
dc.description.startpage
403
-
dc.description.endpage
415
-
dc.type.category
Original Research Article
-
tuw.container.volume
16
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Mathematical and Computer Modelling of Dynamical Systems
-
tuw.publication.orgunit
E325-01 - Forschungsbereich Technische Dynamik und Fahrzeugdynamik
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1080/13873954.2010.507094
-
dc.identifier.eissn
1744-5051
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-9631-2601
-
tuw.author.orcid
0000-0002-4918-6681
-
wb.sci
true
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch
Sonstige und interdisziplinäre Naturwissenschaften
-
wb.sciencebranch.oefos
11
-
wb.sciencebranch.oefos
19
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
University of Vienna
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E325-01 - Forschungsbereich Technische Dynamik und Fahrzeugdynamik
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing