<div class="csl-bib-body">
<div class="csl-entry">Inosov, D. S., Park, J. T., Bourges, P., Sun, D. L., Sidis, Y., Schneidewind, A., Hradil, K., Haug, D., Lin, C. T., Keimer, B., & Hinkov, V. (2010). Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2. <i>Nature Physics</i>, <i>6</i>(3), 178–181. https://doi.org/10.1038/nphys1483</div>
</div>
-
dc.identifier.issn
1745-2473
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/168285
-
dc.description.abstract
Magnetic Cooper-pairing mechanisms have been proposed for heavy-fermion and cuprate superconductors; however, strong electron correlations1 and complications arising from a pseudogap2, 3, 4 or competing phases5 have precluded commonly accepted theories. In the iron arsenides, the proximity of superconductivity and antiferromagnetism in the phase diagram6, 7, the apparently weak electron-phonon coupling8 and the 'resonance peak' in the superconducting spin-excitation spectrum9, 10, 11 have also fostered the hypothesis of magnetically mediated Cooper pairing. However, as most theories of superconductivity are based on a pairing boson of sufficient spectral weight in the normal state, detailed knowledge of the spin-excitation spectrum above the superconducting transition temperature Tc is required to assess the viability of this hypothesis12, 13. Using inelastic neutron scattering we have studied the spin excitations in optimally doped BaFe1.85Co0.15As2 (Tc=25 K) over a wide range of temperatures and energies. We present the results in absolute units and find that the normal-state spectrum carries a weight comparable to that in underdoped cuprates14, 15. In contrast to cuprates, however, the spectrum agrees well with predictions of the theory of nearly antiferromagnetic metals16, without the aforementioned complications. We also show that the temperature evolution of the resonance energy monotonically follows the closing of the superconducting energy gap Δ, as expected from conventional Fermi-liquid approaches17, 18. Our observations point to a surprisingly simple theoretical description of the spin dynamics in the iron arsenides and provide a solid foundation for models of magnetically mediated superconductivity.
en
dc.language.iso
en
-
dc.publisher
NATURE PORTFOLIO
-
dc.relation.ispartof
Nature Physics
-
dc.subject
General Physics and Astronomy
-
dc.title
Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
178
-
dc.description.endpage
181
-
dc.type.category
Original Research Article
-
tuw.container.volume
6
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Structure-Property Relationship
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
60
-
dcterms.isPartOf.title
Nature Physics
-
tuw.publisher.doi
10.1038/nphys1483
-
dc.identifier.eissn
1745-2481
-
dc.description.numberOfPages
4
-
wb.sci
true
-
wb.sciencebranch
Physik, Mechanik, Astronomie
-
wb.sciencebranch
Sonstige und interdisziplinäre Naturwissenschaften