Toggle navigation
reposiTUm
ABOUT REPOSITUM
HELP
Login
News
Browse by
Publication Types
Organizations
Researchers
Projects
TU Wien Academic Press
Open Access Series
Theses
Digitised Works
Year of Publication
DC Field
Value
Language
dc.contributor.author
Hofstätter, Harald
-
dc.contributor.author
Koch, Othmar
-
dc.date.accessioned
2023-03-09T09:17:34Z
-
dc.date.available
2023-03-09T09:17:34Z
-
dc.date.issued
2022
-
dc.identifier.citation
<div class="csl-bib-body"> <div class="csl-entry">Hofstätter, H., & Koch, O. (2022). An approximate eigensolver for self-consistent field calculations. <i>Numerical Algorithms</i>, <i>66</i>, 609–641. https://doi.org/10.1007/s11075-013-9751-6</div> </div>
-
dc.identifier.issn
1017-1398
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/168410
-
dc.description.abstract
In this paper, we give a comprehensive error analysis for an approximate solution method for the generalized eigenvalue problems arising for instance in the context of electronic structure computations based on density functional theory. The solution method has been demonstrated to excel as compared to established solvers in both computational effort and scaling for parallelization. Here we estimate the improvement provided by our proposed subspace method starting from the initial approximations for instance provided in the course of the self-consistent field iteration, showing that in general the approximation quality is improved by our method to yield sufficiently accurate eigenvalues. © 2013 Springer Science+Business Media New York.
en
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Numerical Algorithms
-
dc.subject
65F08
en
dc.subject
65F15
en
dc.subject
65Z05
en
dc.subject
Density functional theory
en
dc.subject
Electronic structure computations
en
dc.subject
Generalized eigenvalue problem
en
dc.subject
Iterative diagonalization
en
dc.title
An approximate eigensolver for self-consistent field calculations
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.scopus
2-s2.0-84903473804
-
dc.identifier.url
https://api.elsevier.com/content/abstract/scopus_id/84903473804
-
dc.description.startpage
609
-
dc.description.endpage
641
-
dcterms.dateSubmitted
2012-08-03
-
dc.type.category
Original Research Article
-
tuw.container.volume
66
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Numerical Algorithms
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
tuw.publisher.doi
10.1007/s11075-013-9751-6
-
dc.date.onlinefirst
2013-09-08
-
dc.identifier.eissn
1572-9265
-
dc.description.numberOfPages
33
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E130 - Fakultät für Physik
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
Appears in Collections:
Article
Show simple item record
Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.
Page view(s)
28
checked on Oct 17, 2023
Google Scholar
TM
Check