<div class="csl-bib-body">
<div class="csl-entry">Pölzlbauer, G., Lidy, T., & Rauber, A. (2008). Decision Manifolds - A Supervised Learning Algorithm Based on Self-Organization. <i>IEEE Transactions on Neural Networks and Learning Systems</i>, <i>19</i>(9), 1518–1530. https://doi.org/10.1109/tnn.2008.2000449</div>
</div>
-
dc.identifier.issn
2162-237X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/170843
-
dc.description.abstract
In this paper, we present a neural classifier algorithm
that locally approximates the decision surface of labeled data by a
patchwork of separating hyperplanes, which are arranged under
certain topological constraints similar to those of self-organizing
maps (SOMs).We take advantage of the fact that these boundaries
can often be represented by linear ones connected by a low-dimensional
nonlinear manifold, thus influencing the placement of
the separators. The resulting classifier allows for a voting scheme
that averages over the classification results of neighboring hyperplanes.
Our algorithm is computationally efficient both in terms
of training and classification. Further, we present a model selection
method to estimate the topology of the classification boundary.
We demonstrate the algorithm's usefulness on several artificial and
real-world data sets and compare it to the state-of-the-art supervised
learning algorithms.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Neural Networks
-
dc.subject
Computer Science Applications
-
dc.subject
Software
-
dc.subject
Artificial Intelligence
-
dc.subject
General Medicine
-
dc.subject
supervised learning
-
dc.subject
Computer Networks and Communications
-
dc.subject
Decision surface estimation
-
dc.subject
self-organizing maps (SOMs)
-
dc.title
Decision Manifolds - A Supervised Learning Algorithm Based on Self-Organization
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1518
-
dc.description.endpage
1530
-
dc.type.category
Original Research Article
-
tuw.container.volume
19
-
tuw.container.issue
9
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
dcterms.isPartOf.title
IEEE Transactions on Neural Networks and Learning Systems
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publisher.doi
10.1109/tnn.2008.2000449
-
dc.identifier.eissn
2162-2388
-
dc.description.numberOfPages
13
-
wb.sci
true
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch.oefos
11
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
E188 - Institut für Softwaretechnik und Interaktive Systeme
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-9272-6225
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering