<div class="csl-bib-body">
<div class="csl-entry">Peruvemba Ramaswamy, V., & Szeider, S. (2022). Learning Large Bayesian Networks with Expert Constraints. In <i>Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022)</i> (pp. 1592–1601). PMLR. https://doi.org/10.34726/3821</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175672
-
dc.identifier.uri
https://doi.org/10.34726/3821
-
dc.description.abstract
We propose a new score-based algorithm for learning the structure of a Bayesian Network (BN). It is the first algorithm that simultaneously supports the requirements of (i) learning a BN of bounded treewidth, (ii) satisfying expert constraints, including positive and negative ancestry properties between nodes, and (iii) scaling up to BNs with several thousand nodes. The algorithm operates in two phases. In Phase 1, we utilize a modified version of an existing BN structure learning algorithm, modified to generate an initial Directed Acyclic Graph (DAG) that supports a portion of the given constraints. In Phase 2, we follow the BN-SLIM framework, introduced by Peruvemba Ramaswamy and Szeider (AAAI 2021). We improve the initial DAG by repeatedly running a MaxSAT solver on selected local parts. The MaxSAT encoding entails local versions of the expert constraints as hard constraints. We evaluate a prototype implementation of our algorithm on several standard benchmark sets. The encouraging results demonstrate the power and flexibility of the BN-SLIM framework. It boosts the score while increasing the number of satisfied expert constraints.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Proceedings of Machine Learning Research (PMLR)
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Bayesian Network
en
dc.subject
Probabilistic Reasoning
en
dc.subject
MaxSAT
en
dc.subject
Propositional Satisfiability
en
dc.subject
Causality
en
dc.title
Learning Large Bayesian Networks with Expert Constraints
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/3821
-
dc.description.startpage
1592
-
dc.description.endpage
1601
-
dcterms.dateSubmitted
2022
-
dc.type.category
Poster Contribution
-
dc.relation.eissn
2640-3498
-
tuw.booktitle
Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022)
-
tuw.container.volume
180
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Proceedings of Machine Learning Research (PMLR)
-
tuw.relation.publisher
PMLR
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/forum?id=HhMg3wUsclc
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
dc.identifier.libraryid
AC17202618
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0002-3101-2085
-
tuw.author.orcid
0000-0001-8994-1656
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.event.name
38th Conference on Uncertainty in Artificial Intelligence
en
tuw.event.startdate
01-08-2022
-
tuw.event.enddate
05-08-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Eindhoven
-
tuw.event.country
NL
-
tuw.event.presenter
Peruvemba Ramaswamy, Vaidyanathan
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_6670
-
item.mimetype
application/pdf
-
item.openairetype
conference poster
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity