<div class="csl-bib-body">
<div class="csl-entry">Gebeshuber, I.-C., Hageneder L., Plank H., & Wewerka, K. (2023, March 13). <i>Towards Biomimetics of Superhydrophobic Water Strider Feet (poster)</i> [Conference Presentation]. 5th Erwin Schrödinger Symposium 2023 of the Erwin Schrödinger Society for Nanosciences “Challenges in Nanoscience & Application,” Mauterndorf/Sbg, Austria.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175683
-
dc.description.abstract
This contribution summarizes first characterization results of superhydrophobic water strider feet with the vision to understand the interplay of morphology and chemistry to ultimately mimic such unique functionalities for future applications. The study started with chemical aspects to validate the likely existence of a wax layer. For that, separated legs were exposed to CHCl3 under controlled conditions, followed by the chemical analyses of the solution. Fourier Transformed - Infrared Spectroscopy (FT-IR) confirmed the expected wax layer as first element for the superhydrophobic functionality. In a second step, individual feet were studied via Environmental Scanning Electron Microscopy (ESEM). For nanoscale studies, we prepared ultrathin cross sections via Ultramicrotomy (UM) and subjected them to Transmission Electron Microscopy (TEM). Together with Atomic Force Microscopy (AFM) studies on UM-prepared block-faces, we could confirm a partial wax coverage by a direct comparison of native and CHCl3 treated feet. In a next step, we conducted ESEM-based, dynamic in situ studies, which directly revealed the hydrophobic H2O condensation on native legs. Currently, we work on a mechanical setup to access friction coefficients of differently treated legs, inspired by the Cavendish method. By that, we will be able to separate between morphology- and chemistry-related contributions to understand the origin of superhydrophobic water strider legs.
en
dc.language.iso
en
-
dc.subject
Bionik
de
dc.subject
Nanotechnologie
de
dc.subject
Rasterkraftmikroskopie
de
dc.title
Towards Biomimetics of Superhydrophobic Water Strider Feet (poster)
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E134-03 - Forschungsbereich Atomic and Plasma Physics
-
tuw.author.orcid
0000-0001-8879-2302
-
tuw.author.orcid
0000-0003-1112-0908
-
tuw.author.orcid
0000-0001-5302-4733
-
tuw.event.name
5th Erwin Schrödinger Symposium 2023 of the Erwin Schrödinger Society for Nanosciences "Challenges in Nanoscience & Application"
en
tuw.event.startdate
13-03-2023
-
tuw.event.enddate
15-03-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Mauterndorf/Sbg
-
tuw.event.country
AT
-
tuw.event.presenter
Gebeshuber, Ilse-Christine
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
100
-
item.openairetype
Presentation
-
item.openairetype
Vortrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E134-03 - Forschungsbereich Atomic and Plasma Physics