<div class="csl-bib-body">
<div class="csl-entry">Lanzinger, M., Sferrazza, S., & Gottlob, G. (2022). New Perspectives for Fuzzy Datalog (Extended Abstract). In <i>Proceedings of the 4th International Workshop on the Resurgence of Datalog in Academia and Industry (Datalog-2.0 2022) co-located with the 16th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR} 2022)</i> (pp. 42–47). http://hdl.handle.net/20.500.12708/175762</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175762
-
dc.description.abstract
Fuzzy logic has a long history as a tool for combining logical reasoning with the different types of uncertainty that are encountered in real-world settings by interpreting degrees of certainty as degrees of truth. This naturally motivates the study of Datalog with fuzzy logic semantics as a reasoning formalism for large databases and KGs with uncertainty. Many variants of fuzzy logic programming have been proposed in the literature [2 , 3 , 4 , 5 , 6 , 7 ], with the most active research focusing on complex multi-adjoint settings [8 , 7 ], or Prolog-derived semantics based on fuzzy similarity of constants and fuzzy unification procedures [ 5 ].
Alternative frameworks for reasoning with uncertainty like Markov Logic Networks [9 ] and Probabilistic Soft Logic [10] require extensive grounding before inference that can quickly become prohibitive when reasoning over large amounts of data. Our proposed language 𝑡-Datalog aims to be a simpler alternative focused on effective reasoning in large databases and KGs with uncertainty and aims to be the fuzzy analogue of standard Datalog. In this paper, we present the 𝑡-Datalog formalism and report on ongoing research.
In particular, we present a simple and efficient fixpoint procedure for computing minimal fuzzy models for 𝑡-Datalog. Furthermore, we show how Datalog with fuzzy semantics relates to the recently proposed Datalog∘ formalism [11]
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
fuzzy logic
en
dc.subject
Datalog
en
dc.subject
Reasoning
en
dc.subject
semantics
en
dc.subject
fuzzy similarity
en
dc.subject
multi-adjoint settings
en
dc.subject
frameworks for reasoning
en
dc.subject
Markov Logic Networks
en
dc.subject
Probabilistic Soft Logic
en
dc.title
New Perspectives for Fuzzy Datalog (Extended Abstract)
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.description.startpage
42
-
dc.description.endpage
47
-
dc.relation.grantno
P30930-N35
-
dcterms.dateSubmitted
2022
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 4th International Workshop on the Resurgence of Datalog in Academia and Industry (Datalog-2.0 2022) co-located with the 16th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR} 2022)
-
tuw.peerreviewed
true
-
tuw.project.title
HyperTrac: hypergraph Decompositions and Tractability
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.linking
https://ceur-ws.org/Vol-3203/
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
dc.description.numberOfPages
6
-
tuw.event.name
Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry
en
tuw.event.startdate
05-09-2022
-
tuw.event.enddate
05-09-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
IT
-
tuw.event.presenter
Lanzinger, Matthias
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P30930-N35
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence