<div class="csl-bib-body">
<div class="csl-entry">Bábor, L., & Kuhlmann, H. C. (2023). Lagrangian transport in the time-periodic two-dimensional lid-driven square cavity. <i>Physics of Fluids</i>, <i>35</i>(3), 1–21. https://doi.org/10.1063/5.0141321</div>
</div>
-
dc.identifier.issn
1070-6631
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175787
-
dc.description.abstract
The Lagrangian transport in the laminar incompressible flow in a two-dimensional square cavity driven by a harmonic tangential oscillation of the lid is investigated numerically for a wide range of Reynolds and Strouhal numbers. The topology of fluid trajectories is analyzed by stroboscopic projections revealing the co-existence of chaotic trajectories and regular Kolmogorov-Arnold-Moser tori. The pathline structure strongly depends on the Reynolds number and the oscillation frequency of the lid. Typically, most pathlines are chaotic when the oscillation frequency is small, with few KAM tori being strongly stretched along instantaneous streamlines of the flow. As the frequency is increased the fluid motion becomes more regular and the size of the KAM tori grows until, at high frequencies, they resemble streamlines of a mean flow.
en
dc.description.sponsorship
Vereine, Stiftungen, Preise
-
dc.language.iso
en
-
dc.publisher
AIP Publishing
-
dc.relation.ispartof
Physics of Fluids
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
chaotic advection
en
dc.subject
mixing efficiency
en
dc.subject
Kolmogorov-Arnold-Moser tori
en
dc.subject
laminar internal flow
en
dc.subject
incompressible flow
en
dc.subject
Newtonian fluid
en
dc.subject
Hamiltonian system
en
dc.subject
Lyapunov exponent
en
dc.subject
Two-dimensional flow
en
dc.subject
oscillating flow
en
dc.subject
heteroclinic tangle
en
dc.subject
periodic orbits
en
dc.subject
quasiperiodic route to chaos
en
dc.subject
dynamical systems
en
dc.subject
Fluid Mechanics
en
dc.title
Lagrangian transport in the time-periodic two-dimensional lid-driven square cavity