<div class="csl-bib-body">
<div class="csl-entry">Deutschmann-Olek, A., Tajik, M., Calzavara, M., Schmiedmayer, J., Calarco, T., & Kugi, A. (2022). Iterative shaping of optical potentials for one-dimensional Bose-Einstein condensates. In <i>Proceedings 2022 IEEE 61st Conference on Decision and Control (CDC)</i> (pp. 5801–5806). https://doi.org/10.1109/CDC51059.2022.9993271</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175838
-
dc.description.abstract
The ability to manipulate clouds of ultra-cold atoms is crucial for modern experiments on quantum many-body systems and quantum thermodynamics as well as future metrological applications of Bose-Einstein condensate. While optical manipulation offers almost arbitrary flexibility, the precise control of the resulting dipole potentials and the mitigation of unwanted disturbances is quite involved and only heuristic algorithms with rather slow convergence rates are available up to now. This paper thus suggests the application of iterative learning control (ILC) methods to generate fine-tuned effective potentials in the presence of uncertainties and external disturbances. Therefore, the given problem is reformulated to obtain a one-dimensional tracking problem by using a quasicontinuous input mapping which can be treated by established ILC methods. Finally, the performance of the proposed concept is illustrated in a simulation scenario.
en
dc.language.iso
en
-
dc.subject
Optical potentials
en
dc.subject
Bose-Einstein condensates
en
dc.subject
Quantum control
en
dc.title
Iterative shaping of optical potentials for one-dimensional Bose-Einstein condensates
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Forschungszentrum Jülich, Germany
-
dc.contributor.affiliation
Forschungszentrum Jülich, Germany
-
dc.relation.isbn
9781665467612
-
dc.description.startpage
5801
-
dc.description.endpage
5806
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings 2022 IEEE 61st Conference on Decision and Control (CDC)