<div class="csl-bib-body">
<div class="csl-entry">Moskalev, A., Sepliarskaia, A., Sosnovik, I., & Smeulders, A. (2022). LieGG: Studying Learned Lie Group Generators. In <i>Advances in Neural Information Processing Systems 35 (NeurIPS 2022)</i>. Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New Orleans, United States of America (the). http://hdl.handle.net/20.500.12708/175981</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175981
-
dc.description.abstract
Symmetries built into a neural network have appeared to be very beneficial for a wide range of tasks as it saves the data to learn them. We depart from the position that when symmetries are not built into a model a priori, it is advantageous for robust networks to learn symmetries directly from the data to fit a task function. In this paper, we present a method to extract symmetries learned by a neural network and to evaluate the degree to which a network is invariant to them. With our method, we are able to explicitly retrieve learned invariances in a form of the generators of corresponding Lie-groups without prior knowledge of symmetries in the data. We use the proposed method to study how symmetrical properties depend on a neural network's parameterization and configuration. We found that the ability of a network to learn symmetries generalizes over a range of architectures. However, the quality of learned symmetries depends on the depth and the number of parameters.
en
dc.language.iso
en
-
dc.subject
Machine Learning
en
dc.subject
Invariance
en
dc.subject
Lie Groups
en
dc.title
LieGG: Studying Learned Lie Group Generators
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Amsterdam, Netherlands (the)
-
dc.contributor.affiliation
University of Amsterdam, Netherlands (the)
-
dc.contributor.affiliation
University of Amsterdam, Netherlands (the)
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/pdf?id=9sKZ60VtRmi
-
tuw.linking
https://openreview.net/forum?id=9sKZ60VtRmi
-
tuw.linking
https://neurips.cc/Conferences/2022
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.description.numberOfPages
12
-
tuw.event.name
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
en
dc.description.sponsorshipexternal
Bosch
-
dc.description.sponsorshipexternal
University of Amsterdam
-
dc.description.sponsorshipexternal
Netherlands Ministry of Economic Affairs and Climate Policy
-
tuw.event.startdate
28-11-2022
-
tuw.event.enddate
09-12-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
New Orleans
-
tuw.event.country
US
-
tuw.event.presenter
Moskalev, Artem
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Amsterdam
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
University of Amsterdam
-
crisitem.author.dept
University of Amsterdam
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering