<div class="csl-bib-body">
<div class="csl-entry">Balazs, P., Tauböck, G., Rajbamshi, S., & Holighaus, N. (2022). Audio Inpainting. In <i>Proceedings of 24th International Congress on Acoustics - ICA 2022</i> (pp. 258–261). http://hdl.handle.net/20.500.12708/176529</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/176529
-
dc.description.abstract
The objective of audio inpainting is to conceal missing or heavily distorted segments in an audio signal. This is ideally done by reconstructing the original signal or, at least, by inferring a meaningful surrogate signal. We present here a novel approach applying sparse modeling in the time-frequency (TF) domain which was recently published.
In particular, we devise a dictionary learning technique which learns the dictionary from reliable parts around the gap with the goal to obtain a signal representation with improved TF sparsity. The presented method is based on a basis optimization technique that deforms a given Gabor frame such that the sparsity of the analysis coefficients of the resulting frame is maximized (with respect to a certain sparsity measure). Furthermore, we modify the SParse Audio INpainter (SPAIN) such that it is able to exploit the improved TF sparsity and—in turn—benefits from dictionary learning. As an alternative, we combine dictionary learning with weighted ℓ1-minimization adapted for audio inpainting to compensate for the loss of energy within the gap after restoration. Our experiments demonstrate that the developed methods achieve significant gains in terms of signal-to-distortion
ratio (SDR) and objective difference grade (ODG) compared with several state-of-the-art audio inpainting techniques.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
Audio Inpainting
en
dc.subject
Time-Frequency
en
dc.subject
Gabor Dictionary
en
dc.subject
Compressive Sensing
en
dc.subject
Basis Optimization
en
dc.subject
Convex Optimization
en
dc.subject
Alternating Direction Method of Multipliers (ADMM)
en
dc.title
Audio Inpainting
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Austrian Academy of Sciences, Austria
-
dc.contributor.affiliation
Austrian Academy of Sciences, Austria
-
dc.description.startpage
258
-
dc.description.endpage
261
-
dc.relation.grantno
MA16-053
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of 24th International Congress on Acoustics - ICA 2022
-
tuw.container.volume
A16: Numerical, Computational and Theoretical Acoustics
-
tuw.project.title
Unendlich-dimensionale Signalverarbeitungs-Methoden für akustische Anwendungen
-
tuw.researchTopic.id
I7
-
tuw.researchTopic.name
Telecommunication
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E389-03 - Forschungsbereich Signal Processing
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0003-3837-2865
-
tuw.event.name
24th International Congress on Acoustics - ICA 2022
en
tuw.event.startdate
24-10-2022
-
tuw.event.enddate
28-10-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
AT
-
tuw.event.presenter
Balazs, Peter
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
25
-
wb.sciencebranch.value
25
-
wb.sciencebranch.value
50
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds