<div class="csl-bib-body">
<div class="csl-entry">Besau, F. G., Hack, T., Pivovarov Peter, & Schuster, F. (2023). Spherical centroid bodies. <i>American Journal of Mathematics</i>, <i>145</i>(2), 515–542. https://doi.org/10.1353/ajm.2023.0012</div>
</div>
-
dc.identifier.issn
0002-9327
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/176544
-
dc.description.abstract
The spherical centroid body of a centrally-symmetric convex body in the Euclidean unit sphere is introduced. Two alternative definitions—one geometric, the other probabilistic in nature—
are given and shown to lead to the same objects. The geometric approach is then used to establish a number of basic properties of spherical centroid bodies, while the probabilistic approach inspires the proof of a spherical analogue of the classical polar Busemann–Petty centroid inequality.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
JOHNS HOPKINS UNIV PRESS
-
dc.relation.ispartof
American Journal of Mathematics
-
dc.subject
centroid body
en
dc.subject
isoperimetric inequality
en
dc.subject
spherical centroid body
en
dc.subject
stochastic approximation
en
dc.subject
weighted centroid body
en
dc.title
Spherical centroid bodies
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Missouri, United States of America (the)