<div class="csl-bib-body">
<div class="csl-entry">Wang, M., Perez-Morelo, D. J., Ramer, G., Pavlidis, G., Schwartz, J. J., Yu, L., Ilic, R., Centrone, A., & Aksyuk, V. A. (2023). Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor. <i>Science Advances</i>, <i>9</i>(11). https://doi.org/10.1126/sciadv.adf7595</div>
</div>
-
dc.identifier.issn
2375-2548
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/176805
-
dc.description.abstract
Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise-limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise-limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.
en
dc.language.iso
en
-
dc.publisher
American Association for the Advancement of Science (AAAS)
-
dc.relation.ispartof
Science Advances
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
-
dc.subject
AFM-IR
en
dc.subject
nanoscale
en
dc.title
Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell 4.0 International
de
dc.identifier.pmid
36921059
-
dc.contributor.affiliation
University of Maryland, Baltimore, United States of America (the)
-
dc.contributor.affiliation
National Institute of Standards and Technology, United States of America (the)
-
dc.contributor.affiliation
National Institute of Standards and Technology, United States of America (the)
-
dc.contributor.affiliation
University of Maryland, College Park, United States of America (the)
-
dc.contributor.affiliation
National Institute of Standards and Technology, United States of America (the)
-
dc.contributor.affiliation
National Institute of Standards and Technology, United States of America (the)
-
dc.contributor.affiliation
National Institute of Standards and Technology, United States of America (the)
-
dc.contributor.affiliation
National Institute of Standards and Technology, United States of America (the)
-
dcterms.dateSubmitted
2022-11-14
-
dc.rights.holder
The Authors
-
dc.type.category
Original Research Article
-
tuw.container.volume
9
-
tuw.container.issue
11
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
tuw.linking
https://doi.org/10.18434/mds2-2926
-
dcterms.isPartOf.title
Science Advances
-
tuw.publication.orgunit
E164-02-1 - Forschungsgruppe Prozessanalytik
-
tuw.publisher.doi
10.1126/sciadv.adf7595
-
dc.identifier.eissn
2375-2548
-
dc.identifier.libraryid
AC17203413
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-0418-4284
-
tuw.author.orcid
0000-0001-5914-5392
-
tuw.author.orcid
0000-0001-8307-5435
-
tuw.author.orcid
0000-0002-3471-3709
-
tuw.author.orcid
0000-0003-1544-1901
-
tuw.author.orcid
0000-0003-2504-4045
-
tuw.author.orcid
0000-0002-2919-3366
-
tuw.author.orcid
0000-0002-9653-4722
-
dc.rights.identifier
CC BY-NC 4.0
en
dc.rights.identifier
CC BY-NC 4.0
de
dc.description.sponsorshipexternal
Corporative Research Agreement Award
-
dc.relation.grantnoexternal
70NANB10H193
-
wb.sci
true
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
10
-
wb.sciencebranch.value
10
-
wb.sciencebranch.value
80
-
item.openaccessfulltext
Open Access
-
item.openairetype
research article
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
open
-
item.mimetype
application/pdf
-
crisitem.author.dept
University of Maryland, Baltimore
-
crisitem.author.dept
National Institute of Standards and Technology
-
crisitem.author.dept
E164-02-1 - Forschungsgruppe Prozessanalytik
-
crisitem.author.dept
National Institute of Standards and Technology
-
crisitem.author.dept
University of Maryland, College Park
-
crisitem.author.dept
E308 - Institut für Werkstoffwissenschaft und Werkstofftechnologie
-
crisitem.author.dept
National Institute of Standards and Technology
-
crisitem.author.dept
National Institute of Standards and Technology
-
crisitem.author.dept
National Institute of Standards and Technology
-
crisitem.author.orcid
0000-0003-0418-4284
-
crisitem.author.orcid
0000-0001-5914-5392
-
crisitem.author.orcid
0000-0001-8307-5435
-
crisitem.author.orcid
0000-0002-3471-3709
-
crisitem.author.orcid
0000-0003-1544-1901
-
crisitem.author.orcid
0000-0003-2504-4045
-
crisitem.author.orcid
0000-0002-2919-3366
-
crisitem.author.orcid
0000-0002-9653-4722
-
crisitem.author.parentorg
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften