<div class="csl-bib-body">
<div class="csl-entry">Bressan, M., Cesa-Bianchi, N., Lattanzi, S., Paudice, A., & Thiessen, M. (2022). Active Learning of Classifiers with Label and Seed Queries. In <i>Advances in Neural Information Processing Systems 35 (NeurIPS 2022)</i>. Thirty-Sixth Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisiana, United States of America (the). Neural information processing systems foundation. https://doi.org/10.34726/4021</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/176899
-
dc.identifier.uri
https://doi.org/10.34726/4021
-
dc.description
Zählung der Konferenz weicht von Zählung des Bandes ab
-
dc.description.abstract
We study exact active learning of binary and multiclass classifiers with margin. Given an n-point set X⊂Rm, we want to learn an unknown classifier on X whose classes have finite strong convex hull margin, a new notion extending the SVM margin. In the standard active learning setting, where only label queries are allowed, learning a classifier with strong convex hull margin γ requires in the worst case Ω(1+1γ)m−12 queries. On the other hand, using the more powerful \emph{seed} queries (a variant of equivalence queries), the target classifier could be learned in O(mlogn) queries via Littlestone's Halving algorithm; however, Halving is computationally inefficient. In this work we show that, by carefully combining the two types of queries, a binary classifier can be learned in time poly(n+m) using only O(m2logn) label queries and O(mlogmγ) seed queries; the result extends to k-class classifiers at the price of a k!k2 multiplicative overhead. Similar results hold when the input points have bounded bit complexity, or when only one class has strong convex hull margin against the rest. We complement the upper bounds by showing that in the worst case any algorithm needs Ω(kmlog1γ) seed and label queries to learn a k-class classifier with strong convex hull margin γ.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Machine Learning
en
dc.subject
Active learning
en
dc.subject
Clustering
en
dc.subject
Multiclass classification
en
dc.title
Active Learning of Classifiers with Label and Seed Queries
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/4021
-
dc.contributor.affiliation
University of Milan, Italy
-
dc.contributor.affiliation
University of Milan, Italy
-
dc.contributor.affiliation
Google (Switzerland), Switzerland
-
dc.contributor.affiliation
University of Milan, Italy
-
dc.relation.isbn
9781713871088
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
-
tuw.container.volume
35
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Neural information processing systems foundation
-
tuw.researchinfrastructure
TRIGA Mark II-Nuklearreaktor
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/forum?id=dNXg-h6YX9h
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.libraryid
AC17204637
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0001-9333-2685
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
Thirty-Sixth Conference on Neural Information Processing Systems (NeurIPS 2022)
en
dc.description.sponsorshipexternal
EU Horizon 2020
-
dc.relation.grantnoexternal
951847
-
tuw.event.startdate
28-11-2022
-
tuw.event.enddate
09-12-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
New Orleans, Louisiana
-
tuw.event.country
US
-
tuw.event.presenter
Thiessen, Maximilian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Milan
-
crisitem.author.dept
University of Milan
-
crisitem.author.dept
Google (Switzerland)
-
crisitem.author.dept
University of Milan
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0001-9333-2685
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering