<div class="csl-bib-body">
<div class="csl-entry">Breit, A., Waltersdorfer, L., Ekaputra, F. J., Sabou, M., Ekelhart, A., Iana, A., Paulheim, H., Portisch, J., Revenko, A., ten Teije, A., & van Harmelen, F. (2023). Combining Machine Learning and Semantic Web: A Systematic Mapping Study. <i>ACM Computing Surveys</i>. https://doi.org/10.1145/3586163</div>
</div>
-
dc.identifier.issn
0360-0300
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/176901
-
dc.description.abstract
In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic components, a new sub-area has emerged that focuses on combining machine learning (ML) components with techniques developed by the Semantic Web (SW) community – Semantic Web Machine Learning (SWeML for short). Due to its rapid growth and impact on several communities in the last two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Yet, surveys that adopt principled and unbiased approaches are missing. To fill this gap, we performed a systematic study and analyzed nearly 500 papers published in the last decade in this area, where we focused on evaluating architectural, and application-specific features. Our analysis identified a rapidly growing interest in SWeML Systems, with a high impact on several application domains and tasks. Catalysts for this rapid growth are the increased application of deep learning and knowledge graph technologies. By leveraging the in-depth understanding of this area acquired through this study, a further key contribution of this paper is a classification system for SWeML Systems which we publish as ontology.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.publisher
ASSOC COMPUTING MACHINERY
-
dc.relation.ispartof
ACM Computing Surveys
-
dc.subject
Semantic Web
en
dc.subject
Machine Learning
en
dc.subject
Artificial Intelligence
en
dc.subject
knowledge graphs
en
dc.subject
neuro-symbolic integration
en
dc.subject
systematic mapping study
en
dc.title
Combining Machine Learning and Semantic Web: A Systematic Mapping Study
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Semantic Web Company, Austria
-
dc.contributor.affiliation
Vienna University of Economics and Business, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
University of Mannheim, Germany
-
dc.contributor.affiliation
University of Mannheim, Germany
-
dc.contributor.affiliation
University of Mannheim, Germany
-
dc.contributor.affiliation
Semantic Web Company
-
dc.contributor.affiliation
Vrije Universiteit Amsterdam
-
dc.contributor.affiliation
Vrije Universiteit Amsterdam
-
dc.relation.grantno
877389
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Ontology-Based ARtificial Intelligence in the Environmental Sector
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
dcterms.isPartOf.title
ACM Computing Surveys
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1145/3586163
-
dc.identifier.eissn
1557-7341
-
dc.description.numberOfPages
36
-
tuw.author.orcid
0000-0003-3682-1364
-
tuw.author.orcid
0000-0002-7248-7503
-
tuw.author.orcid
0000-0003-4386-8195
-
tuw.author.orcid
0000-0001-5420-0663
-
tuw.author.orcid
0000-0001-6681-3328
-
tuw.author.orcid
0000-0002-9771-8822
-
tuw.author.orcid
0000-0002-7913-0048
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
crisitem.author.dept
Semantic Web Company, Austria
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
University of Mannheim
-
crisitem.author.dept
University of Mannheim
-
crisitem.author.dept
University of Mannheim
-
crisitem.author.dept
Semantic Web Company
-
crisitem.author.dept
Vrije Universiteit Amsterdam, the Netherlands
-
crisitem.author.dept
Vrije Universiteit Amsterdam, the Netherlands
-
crisitem.author.orcid
0000-0003-4569-2496
-
crisitem.author.orcid
0000-0001-9301-8418
-
crisitem.author.orcid
0000-0002-7248-7503
-
crisitem.author.orcid
0000-0003-4386-8195
-
crisitem.author.orcid
0000-0001-5420-0663
-
crisitem.author.orcid
0000-0001-6681-3328
-
crisitem.author.orcid
0000-0002-9771-8822
-
crisitem.author.orcid
0000-0002-7913-0048
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH