<div class="csl-bib-body">
<div class="csl-entry">Filipovic, L., Baumgartner, O., Klemenschits, X., Piso, J., Bobinac, J., Reiter, T., Strof, G., Rzepa, G., Stanojevic, Z., & Karner, M. (2023). DTCO flow for air spacer generation and its impact on power and performance at N7. <i>Solid-State Electronics</i>, <i>199</i>, Article 108527. https://doi.org/10.1016/j.sse.2022.108527</div>
</div>
-
dc.identifier.issn
0038-1101
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177014
-
dc.description.abstract
A novel DTCO flow is described with the principal aim to study the impact of air spacer fabrication on the power and performance of a 5-stage inverter ring oscillator at the 7 nm node. The flow incorporates physical and analytical process models from the in-house ViennaPS simulation tool together with device and circuit simulations from GTS Framework’s Cell Designer. The air spacer is usually filled by sequential conformal and non-conformal deposition steps. The impact of the thickness of the conformal layer and the sticking probability during non-conformal deposition on the ring oscillator performance is studied here. The air gap, which forms the core of the air spacer, is generated during the non-conformal deposition step. We extract the relative effective permittivity of the air spacer as a function of these two fabrication parameters by solving the Poisson equation to obtain the spacer capacitance. Finally, SPICE model cards are extracted automatically from the TCAD transistor characteristics and the parasitic network is calculated from the full 3D ring oscillator logic cell using a field solver. We apply our framework on two fabrication flows, when the air gap is created before and after the deposition of the first metal contacts layer. We observe that introducing the air gap inside the spacer results in an at-least 15% improvement in the ring oscillator’s performance, when the power is kept constant. Further improvements can be achieved by reducing the conformal layer thickness and increasing the sticking probability by increasing the chamber partial pressure or increasing the process temperature.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH; Global TCAD Solutions GmbH
-
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Solid-State Electronics
-
dc.subject
Design-technology co-optimization
en
dc.subject
Air spacer
en
dc.subject
Process variability
en
dc.subject
Technology computer aided design
en
dc.subject
Ring oscillator
en
dc.title
DTCO flow for air spacer generation and its impact on power and performance at N7
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Global TCAD Solutions GmbH., Vienna, Austria
-
dc.contributor.affiliation
Global TCAD Solutions GmbH., Vienna, Austria
-
dc.contributor.affiliation
Global TCAD Solutions GmbH., Vienna, Austria
-
dc.contributor.affiliation
Global TCAD Solutions GmbH., Vienna, Austria
-
dc.contributor.affiliation
Global TCAD Solutions GmbH., Vienna, Austria
-
dc.relation.grantno
878662
-
dcterms.dateSubmitted
2022-11-21
-
dc.type.category
Original Research Article
-
tuw.container.volume
199
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Prozessabhängige Struktur-Emulation als Kooptimierungsstrategie für die Bauelementetechnologie
-
tuw.researchTopic.id
Q4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Nanoelectronics
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
dcterms.isPartOf.title
Solid-State Electronics
-
tuw.publication.orgunit
E360 - Institut für Mikroelektronik
-
tuw.publication.orgunit
E360-01 - Forschungsbereich Mikroelektronik
-
tuw.publisher.doi
10.1016/j.sse.2022.108527
-
dc.date.onlinefirst
2023-01
-
dc.identifier.articleid
108527
-
dc.identifier.eissn
1879-2405
-
dc.description.numberOfPages
5
-
tuw.author.orcid
0000-0003-1687-5058
-
tuw.author.orcid
0000-0002-5638-9129
-
wb.sci
true
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
Global TCAD Solutions GmbH, Österreich
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.orcid
0000-0003-1687-5058
-
crisitem.author.orcid
0000-0002-5638-9129
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik