<div class="csl-bib-body">
<div class="csl-entry">Mukunga, T. T., Forkel, M., Forrest, M., Zotta, R.-M., Pande, N., Schlaffer, S., & Dorigo, W. (2023). Effect of Socioeconomic Variables in Predicting Global Fire Ignition Occurrence. <i>Fire</i>, <i>6</i>(5), Article 197. https://doi.org/10.3390/fire6050197</div>
</div>
-
dc.identifier.issn
2571-6255
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177204
-
dc.description.abstract
Fires are a pervasive feature of the terrestrial biosphere and contribute large carbon emissions within the earth system. Humans are responsible for the majority of fire ignitions. Physical and empirical models are used to estimate the future effects of fires on vegetation dynamics and the Earth’s system. However, there is no consensus on how human-caused fire ignitions should be represented in such models. This study aimed to identify which globally available predictors of human activity explain global fire ignitions as observed by satellites. We applied a random forest machine learning framework to state-of-the-art global climate, vegetation, and land cover datasets to establish a baseline against which influences of socioeconomic data (cropland fraction, gross domestic product (GDP), road density, livestock density, grazed lands) on fire ignition occurrence were evaluated. Our results showed that a baseline random forest without human predictors captured the spatial patterns of fire ignitions globally, with hotspots over Sub-Saharan Africa and South East Asia. Adding single human predictors to the baseline model revealed that human variables vary in their effects on fire ignitions and that of the variables considered GDP is the most vital driver of fire ignitions. A combined model with all human predictors showed that the human variables improve the ignition predictions in most regions of the world, with some regions exhibiting worse predictions than the baseline model. We concluded that an ensemble of human predictors can add value to physical and empirical models. There are complex relationships between the variables, as evidenced by the improvement in bias in the combined model compared to the individual models. Furthermore, the variables tested have complex relationships that random forests may struggle to disentangle. Further work is required to detangle the complex regional relationships between these variables. These variables, e.g., population density, are well documented to have substantial effects on fire at local and regional scales; we determined that these variables may provide more insight at more continental scales.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
MDPI
-
dc.relation.ispartof
Fire
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
fire
en
dc.subject
machine learning
en
dc.subject
socioeconomic drivers
en
dc.title
Effect of Socioeconomic Variables in Predicting Global Fire Ignition Occurrence
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
TU Dresden, Germany
-
dc.contributor.affiliation
Senckenberg Biodiversity and Climate Research Centre, Germany
-
dc.relation.grantno
I4271-N29
-
dcterms.dateSubmitted
2023-02-24
-
dc.type.category
Original Research Article
-
tuw.container.volume
6
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Zukünftige Feuer: Interaktion mit Ökosystem und Gesellschaft
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Fire
-
tuw.publication.orgunit
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
tuw.publisher.doi
10.3390/fire6050197
-
dc.date.onlinefirst
2023-05-10
-
dc.identifier.articleid
197
-
dc.identifier.eissn
2571-6255
-
dc.identifier.libraryid
AC17204112
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0001-8649-3421
-
tuw.author.orcid
0000-0003-4742-8648
-
tuw.author.orcid
0000-0001-8054-7572
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.dept
E120-01-2 - Forschungsgruppe Klima- und Umweltfernerkundung
-
crisitem.author.dept
Senckenberg Biodiversity and Climate Research Centre, Germany
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.dept
E120 - Department für Geodäsie und Geoinformation
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.orcid
0000-0001-8649-3421
-
crisitem.author.orcid
0000-0003-4742-8648
-
crisitem.author.orcid
0000-0001-8054-7572
-
crisitem.author.parentorg
E120 - Department für Geodäsie und Geoinformation
-
crisitem.author.parentorg
E120-01 - Forschungsbereich Fernerkundung
-
crisitem.author.parentorg
E120 - Department für Geodäsie und Geoinformation
-
crisitem.author.parentorg
E120 - Department für Geodäsie und Geoinformation
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E120 - Department für Geodäsie und Geoinformation
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)