<div class="csl-bib-body">
<div class="csl-entry">Schörkhuber, D., Pröll, M., & Gelautz, M. (2022). Feature Selection and Multi-task Learning for Pedestrian Crossing Prediction. In <i>2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)</i> (pp. 439–444). IEEE. https://doi.org/10.1109/SITIS57111.2022.00073</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177205
-
dc.description.abstract
Understanding pedestrians’ behaviour is a major challenge for autonomous vehicles in urban environments. An intelligent driving system needs to recognize intentions and anticipate future actions. For the task of pedestrian crossing prediction, we aim to predict the crossing of a pedestrian in traffic from visual features, such that an oncoming vehicle has sufficient time to react. In this work, we assess the efficacy of different input modalities such as human poses, bounding boxes, ego vehicle speed and image-based features for pedestrian crossing prediction. Our findings indicate that image-based features are less effective than suggested in the literature and that our newly generated human poses improve pedestrian crossing prediction. Furthermore, we present a neural network architecture based on recurrent units and multi-task learning which demonstrates that the joint training of multiple tasks has beneficial influence on the capability to identify crossing pedestrians. We evaluate our methods based on the public PIE and JAAD datasets, and generate models on par with state-of-the-art methods with a limited set of features.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Pedestrian Crossing Prediction
en
dc.subject
Behaviour Analysis
en
dc.subject
Recurrent Neural Networks
en
dc.subject
Multi-task Learning
en
dc.title
Feature Selection and Multi-task Learning for Pedestrian Crossing Prediction
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-6654-6495-6
-
dc.relation.doi
10.1109/SITIS57111.2022
-
dc.description.startpage
439
-
dc.description.endpage
444
-
dc.relation.grantno
879642
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.project.title
Multimodales Sensor-Lichtsystem zum Schutz von verletzlichen Verkehrsteilnehmern
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
tuw.publisher.doi
10.1109/SITIS57111.2022.00073
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0003-2015-6507
-
tuw.author.orcid
0000-0002-9476-0865
-
tuw.event.name
16th International Conference on Signal-Image Technology & Internet-Based Systems
en
tuw.event.startdate
19-10-2022
-
tuw.event.enddate
21-10-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Dijon
-
tuw.event.country
FR
-
tuw.event.presenter
Schörkhuber, Dominik
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0003-2015-6507
-
crisitem.author.orcid
0000-0002-9476-0865
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH