<div class="csl-bib-body">
<div class="csl-entry">Firbas, A. (2023). <i>Establishing hereditary graph properties via vertex splitting</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.103864</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.103864
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177267
-
dc.description.abstract
We examine the Π-Vertex Splitting problem, which consists of determining if a given graph can be transformed into a member of a fixed graph class Π using at most k vertex splits. A vertex split is a graph modification that replaces a vertex v with two new vertices, v_1 and v_2, and assigns each edge previously incident to v to either v_1, v_2, or both. We present polynomial-time algorithms for Forest-, Split-, and Threshold-Vertex Splitting, but show that Π-Vertex Splitting is NP-complete for various hereditary graph classes, including cluster graphs, bipartite graphs, perfect graphs, graphs free of finite sets of (induced) cycles, graphs free of a single biconnected forbidden (induced) subgraph, graphs free of a set of triconnected forbidden (induced) subgraphs with bounded diameter, and graphs free of a set of 4-connected forbidden (induced) subgraphs. Furthermore, we provide a dichotomy regarding the classical complexity of Π-Vertex Splitting for graph classes characterized by sets of forbidden induced subgraphs, each containing no more than three vertices. For each such class Π, we either demonstrate that Π-Vertex Splitting is in P, or show that the problem is NP-complete. Lastly, we investigate the parameterized complexity of Π-Vertex Splitting with respect to the number of splits as the parameter. We demonstrate that Triangle-Free Vertex Splitting is para-NP-hard, which implies that for Π characterized by a finite set of forbidden induced subgraphs, Π-Vertex Splitting is in general not fixed-parameter tractable. However, we obtain a linear kernel for Cluster Vertex Splitting.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
vertex splitting
en
dc.subject
vertex split
en
dc.subject
Π-Vertex Splitting
en
dc.subject
graph modification problems
en
dc.subject
hereditary graph classes
en
dc.subject
NP-completeness
en
dc.subject
parameterized complexity
en
dc.subject
graph theory
en
dc.subject
discrete mathematics
en
dc.title
Establishing hereditary graph properties via vertex splitting
en
dc.title.alternative
Über das Herstellen hereditärer Graphenklassen mittels Vertex Plitting
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.103864
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Alexander Firbas
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16856030
-
dc.description.numberOfPages
108
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity