<div class="csl-bib-body">
<div class="csl-entry">Calzavara, M., Kuriatnikov, Y., Deutschmann-Olek, A., Motzoi, F., Erne, S., Kugi, A., Calarco, T., Schmiedmayer, H.-J., & Prüfer, M. (2023). Optimizing Optical Potentials With Physics-Inspired Learning Algorithms. <i>Physical Review Applied</i>, <i>19</i>(4), Article 044090. https://doi.org/10.1103/PhysRevApplied.19.044090</div>
</div>
-
dc.identifier.issn
2331-7019
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177303
-
dc.description.abstract
We present our experimental and theoretical framework, which combines a broadband superluminescent diode with fast learning algorithms to provide speed and accuracy improvements for the optimization of on-dimensional optical dipole potentials, here generated with a digital micromirror device. To characterize the setup and potential speckle patterns arising from coherence, we compare the superluminescent diode to a single-mode laser by investigating interference properties. We employ machine-learning tools to train a physics-inspired model acting as a digital twin of the optical system predicting the behavior of the optical apparatus including all its imperfections. Implementing an iterative algorithm based on iterative learning control we optimize optical potentials an order of magnitude faster than heuristic optimization methods. We compare iterative model-based “offline” optimization and experimental feedback-based “online” optimization. Our methods provide a route to fast optimization of optical potentials, which is relevant for the dynamical manipulation of ultracold gases.
en
dc.description.sponsorship
Österr. Akademie der Wissenschaften
-
dc.language.iso
en
-
dc.publisher
AMER PHYSICAL SOC
-
dc.relation.ispartof
Physical Review Applied
-
dc.subject
manipulation of ultracold gases
en
dc.title
Optimizing Optical Potentials With Physics-Inspired Learning Algorithms
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Peter Grünberg Institut, Jülich, Germany
-
dc.contributor.affiliation
Peter Grünberg Institut, Jülich, Germany
-
dc.contributor.affiliation
Peter Grünberg Institut, Jülich, Germany
-
dc.relation.grantno
ESQ Discovery Schmiedmayer Huber
-
dcterms.dateSubmitted
2022-10-14
-
dc.type.category
Original Research Article
-
tuw.container.volume
19
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Analog Quantum Simulators
-
tuw.researchTopic.id
Q6
-
tuw.researchTopic.name
Quantum Many-body Systems Physics
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Physical Review Applied
-
tuw.publication.orgunit
E141-02 - Forschungsbereich Atom Physics and Quantum Optics