<div class="csl-bib-body">
<div class="csl-entry">Zaitoun, A., Sagi, T., & Hose, K. (2023). Automated Ontology Evaluation: Evaluating Coverage and Correctness using a Domain Corpus. In Y. Ding, J. Tang, & J. Sequeda (Eds.), <i>WWW ’23 Companion: Companion Proceedings of the ACM Web Conference 2023</i> (pp. 1127–1137). Association for Computing Machinery. https://doi.org/10.1145/3543873.3587617</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177465
-
dc.description.abstract
Ontologies conceptualize domains and are a crucial part of web semantics and information systems. However, re-using an existing ontology for a new task requires a detailed evaluation of the candidate ontology as it may cover only a subset of the domain concepts, contain information that is redundant or misleading, and have inaccurate relations and hierarchies between concepts. Manual evaluation of large and complex ontologies is a tedious task. Thus, a few approaches have been proposed for automated evaluation, ranging from concept coverage to ontology generation from a corpus. Existing approaches, however, are limited by their dependence on external structured knowledge sources, such as a thesaurus, as well as by their inability to evaluate semantic relationships. In this paper, we propose a novel framework to automatically evaluate the domain coverage and semantic correctness of existing ontologies based on domain information derived from text. The approach uses a domain-tuned named-entity-recognition model to extract phrasal concepts. The extracted concepts are then used as a representation of the domain against which we evaluate the candidate ontology’s concepts. We further employ a domain-tuned language model to determine the semantic correctness of the candidate ontology’s relations. We demonstrate our automated approach on several large ontologies from the oceanographic domain and show its agreement with a manual evaluation by domain experts and its superiority over the state-of-the-art.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
ontologies
en
dc.subject
natural language processing
en
dc.subject
BERT
en
dc.subject
Web Ontology Language
en
dc.title
Automated Ontology Evaluation: Evaluating Coverage and Correctness using a Domain Corpus
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
University of Haifa, Israel
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.editoraffiliation
The University of Texas at Austin, United States of America (the)
-
dc.contributor.editoraffiliation
Tsinghua University, China
-
dc.contributor.editoraffiliation
data.world
-
dc.relation.isbn
978-1-4503-9419-2
-
dc.relation.doi
10.1145/3543873
-
dc.description.startpage
1127
-
dc.description.endpage
1137
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
WWW '23 Companion: Companion Proceedings of the ACM Web Conference 2023
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
80
-
tuw.researchTopic.value
20
-
tuw.linking
https://sites.google.com/view/nlp4kg/home
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publisher.doi
10.1145/3543873.3587617
-
dc.identifier.libraryid
AC17204328
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0002-1818-5619
-
tuw.author.orcid
0000-0002-8916-0128
-
tuw.author.orcid
0000-0001-7025-8099
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0002-3991-2539
-
tuw.editor.orcid
0000-0003-3112-9299
-
tuw.event.name
ACM Web Conference 2023
en
dc.description.sponsorshipexternal
Israel PBC
-
dc.description.sponsorshipexternal
Independent Research Fund Denmark
-
dc.relation.grantnoexternal
100009443
-
dc.relation.grantnoexternal
8048-00051B
-
tuw.event.startdate
30-04-2023
-
tuw.event.enddate
04-05-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Austin, Texas
-
tuw.event.country
US
-
tuw.event.presenter
Zaitoun, Antonio
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.mimetype
application/pdf
-
crisitem.author.dept
University of Haifa
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence