<div class="csl-bib-body">
<div class="csl-entry">Krullikowski, C., Chow, C., Wieland, M., Martinis, S., Chinni, M., Matgen, P., Bauer-Marschallinger, B., Roth, F., Wagner, W., Stachl, T., Reimer, C., Briese, C., & Salamon, P. (2023). A likelihood analysis of the Global Flood Monitoring ensemble product. In <i>EGU General Assembly 2023</i>. EGU General Assembly 2023, Wien, Austria. EGU. https://doi.org/10.5194/egusphere-egu23-8774</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177482
-
dc.description.abstract
Flooding is a natural disaster that can have devastating impacts on communities and individuals, causing significant damage to infrastructure, loss of life, and economic disruption. The Global Flood Monitoring (GFM) system of the Copernicus Emergency Management Service (CEMS) addresses these challenges and provides global, near-real time flood extent masks for each newly acquired Sentinel-1 Interferometric Wide Swath Synthetic Aperture Radar (SAR) image, as well as archive data from 2015 on, and therefore supports decision makers and disaster relief actions. The GFM flood extent is an ensemble product based on a combination of three independently developed flood mapping algorithms that individually derive the flood information from Sentinel-1 data. Each flood algorithm also provides classification uncertainty information as flood classification likelihood that is aggregated in the same ensemble process. All three algorithms utilize different methods both for flood detection and the derivation of uncertainty information.
The first algorithm applies a threshold-based flood detection approach and provides uncertainty information through fuzzy memberships. The second algorithm applies a change detection approach where the classification uncertainty is expressed through classification probabilities. The third algorithm applies the Bayes decision theorem and derives uncertainty information through the posterior probability of the less probable class. The final GFM ensemble likelihood layer is computed with the mean likelihood on pixel level. As the flood detection algorithms derive uncertainty information with different methods, the value range of the three input likelihoods must be harmonized to a range from low [0] to high [100] flood likelihood.
The ensemble likelihood is evaluated on two test sites in Myanmar and Somalia showcasing the performance during an actual flood event and an area with challenging conditions for SAR-based flood detection. The findings further elaborate on the statistical robustness when aggregating multiple likelihood layers.
The final GFM ensemble likelihood layer serves as a simplified appraisal of trust in the ensemble flood extent detection approach. As an ensemble likelihood, it provides more robust and reliable uncertainty information for the flood detection compared to the usage of a single algorithm only. It can therefore help interpreting the satellite data and consequently to mitigate the effects of flooding and accompanied damages on communities and individuals.
en
dc.language.iso
en
-
dc.subject
remote sensing
en
dc.subject
floods
en
dc.title
A likelihood analysis of the Global Flood Monitoring ensemble product
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
EODC Earth Observation Data Centre for Water Resources Monitoring GmbH, Austria
-
dc.contributor.affiliation
European Commission, Belgium
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
EGU General Assembly 2023
-
tuw.relation.publisher
EGU
-
tuw.book.chapter
EGU23-8774
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120 - Department für Geodäsie und Geoinformation
-
tuw.publication.orgunit
E120-01 - Forschungsbereich Fernerkundung
-
tuw.publisher.doi
10.5194/egusphere-egu23-8774
-
tuw.author.orcid
0000-0001-8717-692X
-
tuw.author.orcid
0000-0003-3716-0924
-
tuw.author.orcid
0000-0002-1155-723X
-
tuw.author.orcid
0000-0002-6400-361X
-
tuw.author.orcid
0000-0001-6668-4693
-
tuw.author.orcid
0000-0001-7356-7516
-
tuw.author.orcid
0000-0001-7704-6857
-
tuw.author.orcid
0000-0002-5419-5398
-
tuw.event.name
EGU General Assembly 2023
en
tuw.event.startdate
23-04-2023
-
tuw.event.enddate
28-04-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
European Geosciences Union
-
tuw.event.presenter
Krullikowski, Christian
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland
-
crisitem.author.dept
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland
-
crisitem.author.dept
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland
-
crisitem.author.dept
Deutsches Zentrum für Luft- und Raumfahrt, Deutschland