<div class="csl-bib-body">
<div class="csl-entry">Pande, N., & Dorigo, W. A. (2023). Investigating causal effects of anthropogenic factors on global fire modeling. In <i>EGU General Assembly 2023</i>. EGU General Assembly 2023, Wien, Austria. EGU. https://doi.org/10.5194/egusphere-egu23-12716</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177492
-
dc.description.abstract
Humans significantly control the natural environment and natural processes. Global fire ignitions are a prime example of how human actions change the frequency of occurrence of otherwise rare events like wildfires. However, human controls on fire ignition are insufficiently characterised by global fire models because impacts are often indirect, complex, and collinear. Hence, modelling fire activity while considering the complex relationships amongst the input variables and their effect on global ignitions is crucial to developing fire models reflecting the real world.
This presentation leverages causal inference and machine learning frameworks applied to global datasets of fire ignitions from Earth observations and potential drivers to uncover anthropogenic pathways on fire ignition. Potential fire controls include human predictors from Earth observations and statistical data combined with variables traditionally associated with fire activity, like weather, and vegetation abundance and state, derived from earth observations and models.
Our research models causal relationships between fire control variables and global ignitions using Directed Acyclic Graphs(DAGs). Here, every edge between variables symbolises a relation between them; the edge weight indicates the strength of the relationship, and the orientation of the edge between the variables signifies the cause-and-effect relationship between the variables. However, defining a fire ignition distribution using DAGs is challenging owing to the large combinatorial sample space and acyclicity constraint. We use Bayesian structure learning to make these approximations and infer the extent of human intervention when combined with climate variables and vegetation properties. Our research demonstrates the need for causal modelling and the inclusion of anthropogenic factors in global fire modelling.
en
dc.language.iso
en
-
dc.subject
remote sensing
en
dc.subject
fire modeling
en
dc.title
Investigating causal effects of anthropogenic factors on global fire modeling
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
EGU General Assembly 2023
-
tuw.relation.publisher
EGU
-
tuw.book.chapter
EGU23-12716
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120 - Department für Geodäsie und Geoinformation
-
tuw.publication.orgunit
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
tuw.publisher.doi
10.5194/egusphere-egu23-12716
-
tuw.author.orcid
0000-0001-8054-7572
-
tuw.event.name
EGU General Assembly 2023
en
tuw.event.startdate
23-04-2023
-
tuw.event.enddate
28-04-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
European Geosciences Union
-
tuw.event.presenter
Pande, Nirlipta
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.languageiso639-1
en
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung