<div class="csl-bib-body">
<div class="csl-entry">Massart, S. J. A., Vreugdenhil, M., Bauer-Marschallinger, B., Navacchi, C., Raml, B., Dostálová, A., & Wagner, W. (2023). Mitigating the impact of dense vegetation on the Sentinel-1 surface soil moisture over Europe. In <i>EGU General Assembly 2023</i>. EGU General Assembly 2023, Wien, Austria. https://doi.org/10.5194/egusphere-egu23-12269</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177496
-
dc.description.abstract
The current generation of Synthetic Aperture Radars (SAR) has a high potential to retrieve surface soil moisture (SSM) at a kilometer-scale resolution. Research has shown that a change detection approach applied to the backscatter from the Sentinel-1 mission was able to yield a consistent kilometer-scale SSM product over Europe. This product is operational and available on the Copernicus Global Land Service (CGLS) website (https://land.copernicus.eu/global/). A known problem of the CGLS algorithm is its reduced performance over areas with dense vegetation. The combined influence of vegetation water content and geometry on the backscatter signal results in a lower sensitivity to SSM. This effect is especially observed over woody vegetation such as broadleaved or coniferous forests. In addition, a wet bias is detected in the CGLS SSM data during the growing season over land cover with seasonal variation of vegetation.
This study utilizes the native resolution of Sentinel-1 in its interferometric wide swath mode (20x22m), resampled to a 20m pixel spacing, to assess three dense vegetation masks over Europe. The masks are derived from forest/tree cover maps based on Sentinel-1, Sentinel-2, or a combination of both. At 20m, the backscatter pixels are selectively filtered to discard the ones flagged as non-soil moisture sensitive. The masked backscatter at 20m sampling is then resampled to a kilometer scale and used as input for the CGLS change detection model algorithm. The resulting SSM product is compared to in-situ stations from the International Soil Moisture Network (ISMN) and with modeled soil moisture from ERA5-Land. The results sug gest that masking dense vegetation consistently improves the SSM signal over regions containing both forested areas, and croplands or grasslands.
This study highlights the potential of masking non-soil moisture sensitive pixels at the native resolution of the Sentinel-1 backscatter. The results demonstrate the ability of high-resolution forest masking to mitigate the effect of dense vegetation on the CGLS SSM product.
en
dc.language.iso
en
-
dc.subject
remote sensing
en
dc.subject
soil moisture
en
dc.subject
Sentinel-1
en
dc.title
Mitigating the impact of dense vegetation on the Sentinel-1 surface soil moisture over Europe
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Earth Observation Data Centre for Water Resources Monitoring (EODC), Austria
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
EGU General Assembly 2023
-
tuw.book.chapter
EGU23-12269
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120 - Department für Geodäsie und Geoinformation
-
tuw.publication.orgunit
E120-01 - Forschungsbereich Fernerkundung
-
tuw.publisher.doi
10.5194/egusphere-egu23-12269
-
tuw.author.orcid
0000-0001-7356-7516
-
tuw.author.orcid
0000-0001-7704-6857
-
tuw.event.name
EGU General Assembly 2023
en
tuw.event.startdate
23-04-2023
-
tuw.event.enddate
28-04-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
European Geosciences Union
-
tuw.event.presenter
Massart, Samuel Julian A
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.languageiso639-1
en
-
crisitem.author.dept
E120-01 - Forschungsbereich Fernerkundung
-
crisitem.author.dept
E120-01 - Forschungsbereich Fernerkundung
-
crisitem.author.dept
E120-01 - Forschungsbereich Fernerkundung
-
crisitem.author.dept
E120-01 - Forschungsbereich Fernerkundung
-
crisitem.author.dept
E120-01 - Forschungsbereich Fernerkundung
-
crisitem.author.dept
Earth Observation Data Centre for Water Resources Monitoring (EODC), Austria