<div class="csl-bib-body">
<div class="csl-entry">Gruber, A., & Reichle, R. (2023). Uncertainty Estimation for SMAP Level-1 Brightness Temperature Assimilation at Different Timescales. In <i>EGU General Assembly 2023</i>. EGU General Assembly 2023, Wien, Austria. https://doi.org/10.5194/egusphere-egu23-1903</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177501
-
dc.description.abstract
In this study, we assimilate Soil Moisture Active Passive (SMAP) mission brightness temperature (Tb) observations into NASA's Catchment Land Surface Model using an Ensemble Kalman filter to update surface and root-zone soil moisture simulations. Different time series components of the Tb observations are assimilated including anomalies, inter-annual variations, and high-frequency variations. To optimize the weights that the data assimilation (DA) puts on the observations, the ratio between the uncertainties of modeled and observed Tb is approximated using modeled and observed soil moisture uncertainties estimated using triple collocation analysis. Results are compared to a benchmark experiment that mimics the operational SMAP Level-4 algorithm, which assimilates Tb observations using a spatially-constant 4 Kelvin (K) observation uncertainty.
All DA experiments exhibit notable skill improvements in most regions. Improvements are greatest for the inter-annual variations in the simulations of both surface and root-zone soil moisture (mean improvements in terms of Pearson correlation (-) are 0.08 and 0.06, respectively). Anomaly simulations improve similarly (0.07), and improvements in the high-frequency variations are only observed for surface soil moisture simulations (0.06). Strikingly, however, no notable difference in skill—neither improvement nor deterioration—is observed between the experiments that use optimized observation uncertainty parameters and the 4 K benchmark experiment. We show, analytically, that this may be explained by the presence of large observation operator errors, which have the potential to render post-update uncertainty insensitive to inaccuracies in the Kalman gain.
en
dc.language.iso
en
-
dc.subject
remote sensing
en
dc.title
Uncertainty Estimation for SMAP Level-1 Brightness Temperature Assimilation at Different Timescales
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
EGU General Assembly 2023
-
tuw.book.chapter
EGU23-1903
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120 - Department für Geodäsie und Geoinformation
-
tuw.publication.orgunit
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
tuw.publisher.doi
10.5194/egusphere-egu23-1903
-
tuw.author.orcid
0000-0001-5513-0150
-
tuw.event.name
EGU General Assembly 2023
en
tuw.event.startdate
23-04-2023
-
tuw.event.enddate
28-04-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
European Geosciences Union
-
tuw.event.presenter
Gruber, Alexander
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.languageiso639-1
en
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.dept
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA