<div class="csl-bib-body">
<div class="csl-entry">Vitagliano, G., Fadel, M., Apellaniz, I., Kleinmann, M., Lücke, B., Klempt, C., & Tóth, G. (2023). Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles. <i>Quantum</i>, <i>7</i>, 914–947. https://doi.org/10.22331/q-2023-02-09-914</div>
</div>
-
dc.identifier.issn
2521-327X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177552
-
dc.description.abstract
We present a method to detect bipartite entanglement based on number-phase-like uncertainty relations in split spin ensembles. First, we derive an uncertainty relation that plays the role of a number-phase uncertainty for spin systems. It is important that the relation is given with well-defined and easily measurable quantities, and that it does not need assuming infinite dimensional systems. Based on this uncertainty relation, we show how to detect bipartite entanglement in an unpolarized Dicke state of many spin-1/2 particles. The particles are split into two subensembles, then collective angular momentum measurements are carried out locally on the two parts. First, we present a bipartite Einstein-Podolsky-Rosen (EPR) steering criterion. Then, we present an entanglement condition that can detect bipartite entanglement in such systems. We demonstrate the utility of the criteria by applying them to a recent experiment given in K. Lange et al. [Science 360, 416 (2018)] realizing a Dicke state in a Bose-Einstein condensate of cold atoms, in which the two subensembles were spatially separated from each other. Our methods also work well if split spin-squeezed states are considered. We show in a comprehensive way how to handle experimental imperfections, such as the nonzero particle number variance including the partition noise, and the fact that, while ideally BECs occupy a single spatial mode, in practice the population of other spatial modes cannot be fully suppressed.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
-
dc.relation.ispartof
Quantum
-
dc.subject
Uncertainty relations
en
dc.subject
entanglement
en
dc.title
Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
University of the Basque Country, Spain
-
dc.contributor.affiliation
University of Siegen, Germany
-
dc.contributor.affiliation
Leibniz Universität Hannover, Germany
-
dc.contributor.affiliation
Leibniz Universität Hannover, Germany
-
dc.contributor.affiliation
University of the Basque Country, Spain
-
dc.description.startpage
914
-
dc.description.endpage
947
-
dc.relation.grantno
P 36633
-
dc.relation.grantno
P 35810
-
dc.type.category
Original Research Article
-
tuw.container.volume
7
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Nonequilibrium quantum working fluids: dynamics and usage
-
tuw.project.title
Spatio-temporal correlations in many-body quantum systems
-
tuw.researchTopic.id
Q6
-
tuw.researchTopic.name
Quantum Many-body Systems Physics
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Quantum
-
tuw.publication.orgunit
E141 - Atominstitut
-
tuw.publication.orgunit
E141-08 - Forschungsbereich Quantum Optics and Quantum Information