<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., & Länger, H. (2023). Operator residuation in orthomodular posets of finite height. <i>Fuzzy Sets and Systems</i>, <i>467</i>, Article 108589. https://doi.org/10.1016/j.fss.2023.108589</div>
</div>
-
dc.identifier.issn
0165-0114
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177603
-
dc.description.abstract
We show that for every orthomodular poset of finite height there can be defined two operators forming an adjoint pair with respect to an order-like relation defined on the power set of P. This enables us to introduce the so-called operator residuated poset corresponding to P from which the original orthomodular poset P can be recovered. We show that this construction of operators can be applied also to so-called weakly orthomodular and dually weakly orthomodular posets. Examples of such posets are included.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Fuzzy Sets and Systems
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
orthomodular poset
en
dc.subject
weakly orthomodular poset
en
dc.subject
dually weakly orthomodular poset
en
dc.subject
poset of finite height
en
dc.subject
operator residuated structure
en
dc.subject
left adjointness
en
dc.title
Operator residuation in orthomodular posets of finite height