<div class="csl-bib-body">
<div class="csl-entry">Renoldner, M. (2023). <i>A mass, energy, and helicity conserving dual-field discretization of the incompressible Navier-Stokes problem</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.110820</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.110820
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177634
-
dc.description.abstract
A structure-preserving dual-field discretization of the 3D incompressible Navier-Stokes problem is derived, which conserves mass, kinetic energy, and helicity on a periodic domain. In this approach, a conservative mixed variational formulation is introduced. It is based on two systems of equations with dual representations of velocity, vorticity, and pressure. Then, astaggered temporal discretization is constructed in order to integrate the evolution equations and to decouple the two systems. That way, the convective terms are linearzed, resulting in two discrete, algebraic systems. Furthermore, a spatial Galerkin Finite Element discretizationis introduced, that follows a mimetic approach: The finite dimensional spaces form a discrete de Rham complex, which is essential to enable the conservation properties of the scheme. Conservation of mass, kinetic energy, and helicity at the discrete level is proven in the inviscid limit.The proposed method is expanded to a much more realistic, non-periodic Dirichlet problem, by adapting the finite-dimensional function spaces. It is proven, that mass and kinetic energy arestill conserved. Numerical tests supporting the method in both the periodic and non-periodic setting are provided.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Navier Stokes Equation
en
dc.subject
Structure Preserving Discretization
en
dc.title
A mass, energy, and helicity conserving dual-field discretization of the incompressible Navier-Stokes problem
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.110820
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Markus Renoldner
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Faustmann, Markus
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16868876
-
dc.description.numberOfPages
64
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.cerifentitytype
Publications
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
crisitem.author.dept
E325 - Institut für Mechanik und Mechatronik
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften