<div class="csl-bib-body">
<div class="csl-entry">Forster, B. (2006). <i>Sensitivity analysis for jump-diffusions</i> [Dissertation, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/181346</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/181346
-
dc.description.abstract
The objective of this thesis is to provide formulas for the calculation of sensitivities of the price of a contingent claim - also referred to as the Greeks - where the driving process follows a jump-diffusion. For this reason we show the existence of Malliavin weights under general hypoellipticity assumptions. We only apply Malliavin calculus for Brownian motion and do not have to establish any Malliavin-type calculus with respect to jump processes. In order to construct the above mentioned Malliavin weights and to derive explicit formulas for the Greeks, we have to prove the invertibility of the Malliavin covariance matrix. This approach extends the results by Davis and Johansson, as we do not have to impose any separability assumptions and are moreover able to consider hypoelliptic diffusion terms.<br />Furthermore, we present some numerical implementations of the Merton model and a stochastic volatility model driven by a jump-diffusion through Monte Carlo methods. We show that already for quite simple discontinuous payoff functions (e.g., digital options), sensitivities obtained by Malliavin-Monte-Carlo methods perform much better than those derived from finite difference approximations.
de
dc.language
English
-
dc.language.iso
en
-
dc.subject
Malliavin Kalkül
de
dc.subject
Sensitivitätsanalyse
de
dc.subject
Sprungprozesse
de
dc.subject
Hörmander Bedingung
de
dc.subject
Malliavin Calculus
en
dc.subject
Sensitivity Analysis
en
dc.subject
Greeks
en
dc.subject
Jump-Diffusions
en
dc.subject
Hörmander Condition
en
dc.title
Sensitivity analysis for jump-diffusions
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.contributor.affiliation
TU Wien, Österreich
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Privault, Nicolas
-
dc.contributor.assistant
Schachermayer, Walter
-
tuw.publication.orgunit
E105 - Institut für Wirtschaftsmathematik
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC05033359
-
dc.description.numberOfPages
120
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik