<div class="csl-bib-body">
<div class="csl-entry">Qiu, J., Crow, W., Wagner, W., & Zhao, T. (2019). Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing. <i>International Journal of Applied Earth Observation and Geoinformation</i>, <i>80</i>, 47–57. https://doi.org/10.34726/1261</div>
</div>
-
dc.identifier.issn
1569-8432
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/18200
-
dc.identifier.uri
https://doi.org/10.34726/1261
-
dc.description.abstract
The recent launch of the Sentinel-1 A and Sentinel-1B synthetic aperture radar (SAR) satellite constellation has provided high-quality SAR data with fine spatial and temporal sampling characterizations (6˜12 revisit days at 10 m spatial resolution). When combined with high-resolution optical remote sensing, this data can potentially be used for high-resolution soil moisture retrieval over vegetated areas. However, the suitability of different vegetation index (VI) types for the parameterization of vegetation water content in SAR vegetation scattering models requires further investigation. In this study, the widely-used physical-based Advanced Integral Equation Model (AIEM) is coupled with the Water Cloud Model (WCM) for the retrieval of field-scale soil moisture. Three different VIs (NDVI, EVI, and LAI) produced by two different satellite sensors (Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat) are selected to examine their impact on the parameterization of vegetation water content, and subsequently, on soil moisture retrieval accuracy. Results indicate that, despite the different sensitivity of estimated surface roughness parameters to various VIs (i.e., this sensitivity is highest when utilizing MODIS EVI and lowest in the LAI-based model), the optimum roughness parameters derived from each VI exhibit no discernible difference. Consequently, the soil moisture retrieval accuracies show no noticeable sensitivity to the choice of a particular VI. Generally, meadow and grassland sites with small differences in VI-derived roughness parameters exhibit good performance in soil moisture estimation. With respect to the relative components in the coupled model, the vegetative contribution to the scattering signal exceeds that of soil at VI about 0.6∼0.8 [-] in NDVI-based models and 0.4∼0.6 [-] in EVI-based models. This study provides insight into the proper selection of vegetation indices during the use of SAR and optical imagery for the retrieval of high-resolution surface soil moisture.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
International Journal of Applied Earth Observation and Geoinformation
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Sentinel-1
en
dc.subject
SAR
en
dc.subject
Surface soil moisture
en
dc.subject
Advanced integral equation model
en
dc.subject
Water cloud model
en
dc.subject
Vegetation water content
en
dc.subject
Heihe River Basin
en
dc.title
Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.doi
10.34726/1261
-
dc.contributor.affiliation
Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
-
dc.contributor.affiliation
State Key Laboratory of Remote Sensing Science, China
-
dc.description.startpage
47
-
dc.description.endpage
57
-
dc.type.category
Original Research Article
-
tuw.container.volume
80
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
dcterms.isPartOf.title
International Journal of Applied Earth Observation and Geoinformation
Natural Science Foundation of Guangdong Province, 557 China
-
dc.description.sponsorshipexternal
Fundamental Research Funds for 558 the Central Universities
-
dc.relation.grantnoexternal
Grant No. 41501450
-
dc.relation.grantnoexternal
Grant No. 2016A030310154
-
dc.relation.grantnoexternal
No. 16lgpy06
-
wb.sci
true
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China