<div class="csl-bib-body">
<div class="csl-entry">Kim, H., Parinussa, R., Konings, A., Wagner, W., Cosh, M., Lakshmi, V., Zohaib, M., & Choi, M. (2018). Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. <i>Remote Sensing of Environment</i>, <i>204</i>, 260–275. https://doi.org/10.34726/1321</div>
</div>
-
dc.identifier.issn
0034-4257
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/18281
-
dc.identifier.uri
https://doi.org/10.34726/1321
-
dc.description.abstract
Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and combined the Soil Moisture Active Passive (SMAP), Advanced Scatterometer (ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSM products using a triple collocation (TC) analysis and the maximized Pearson correlation coefficient (R) method from April 2015 to December 2016. The Global Land Data Assimilation System (GLDAS) and global in situ observations were utilized to investigate and to compare the quality of satellite-based SSM products. The average R-values of SMAP, ASCAT, and AMSR2 were 0.74, 0.64, and 0.65 when they compared with in situ networks, respectively. The ubRMSD values were (0.0411, 0.0625, and 0.0708) m3 m− 3; and the bias values were (− 0.0460, 0.0010, and 0.0418) m3 m− 3 for SMAP, ASCAT, and AMSR2, respectively. The highest average R-values from SMAP against the in situ results are very encouraging; only SMAP showed higher R-values than GLDAS in several in situ networks with low ubRMSD (0.0438 m3 m− 3). Overall, SMAP showed a dry bias (− 0.0460 m3 m− 3) and AMSR2 had a wet bias (0.0418 m3 m− 3); while ASCAT showed the least bias (0.0010 m3 m− 3) among all the products. Each product was evaluated using TC metrics with respect to the different ranges of vegetation optical depth (VOD). Under vegetation scarce conditions (VOD < 0.10), such as desert and semi-desert regions, all products have difficulty obtaining SSM information. In regions with moderately vegetated areas (0.10 < VOD < 0.40), SMAP showed the highest Signal-to-Noise Ratio. Over highly vegetated regions (VOD > 0.40) ASCAT showed comparatively better performance than did the other products. Using the maximized R method, SMAP, ASCAT, and AMSR2 products were combined one by one using the GLDAS dataset for reference SSM values. When the satellite products were combined, R-values of the combined products were improved or degraded depending on the VOD ranges produced, when compared with the results from the original products alone. The results of this study provide an overview of SMAP, ASCAT, and AMSR2 reliability and the performance of their combined products on a global scale. This study is the first to show the advantages of the recently available SMAP dataset for effective merging of different satellite products and of their application to various hydro-meteorological problems.
en
dc.language.iso
en
-
dc.publisher
Elsevier
-
dc.relation.ispartof
Remote Sensing of Environment
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
AMSR2
en
dc.subject
ASCAT
en
dc.subject
Combining datasets
en
dc.subject
Inter-comparison
en
dc.subject
Remotely sensed soil moisture retrievals
en
dc.subject
SMAP
en
dc.subject
Triple collocation error estimator
en
dc.title
Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International