<div class="csl-bib-body">
<div class="csl-entry">Pfandler, A. T. (2009). <i>Decentralized diagnosis: complexity analysis and Datalog encodings</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/186621</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/186621
-
dc.description
Zsfassung in dt. Sprache
-
dc.description.abstract
Diagnosis is an important field of Artificial Intelligence.<br />Recently, Console et al. proposed a framework for decentralized qualitative model-based diagnosis. The basic idea is to decompose a complex system into subsystems, each of which gets a local diagnoser assigned. The global diagnosis is computed by "asking" the local diagnosers, while some information may be private. However, some problems remained open, in particular a detailed complexity analysis and an implementation are missing. The goal of this work is to resolve some of these open problems. To this end, we introduce extended definitions, based upon which we will define several related problems and analyze their complexity. For each defined problem, an upper bound is presented.<br />Furthermore, we discuss slight modifications which allow us to prove the completeness of some problems. Using these theoretical results from the complexity analysis, we propose datalog encodings of the previously defined problems that match the complexity. Finally, the encodings are evaluated using the datalog system DLV.
en
dc.language
English
-
dc.language.iso
en
-
dc.subject
Diagnose
de
dc.subject
Komplexität
de
dc.subject
Datalog
de
dc.subject
Diagnosis
en
dc.subject
Complexity
en
dc.subject
Datalog
en
dc.title
Decentralized diagnosis: complexity analysis and Datalog encodings
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.contributor.affiliation
TU Wien, Österreich
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Woltran, Stefan
-
tuw.publication.orgunit
E184 - Institut für Informationssysteme
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC07806347
-
dc.description.numberOfPages
112
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-1760-122X
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence