<div class="csl-bib-body">
<div class="csl-entry">Bahr, B. (2021). <i>Efficient realization of a residual-type error estimator for the fractional Laplacian</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.93680</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2021.93680
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/18668
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis focuses on the efficient calculation of a residual error estimator from the work "Quasi-optimal convergence rate for an adaptive method for the integral fractional laplacian" of M. Faustmann, J. Melenk and D. Praetorius. This estimator is used to steer an adaptive finite element method (FEM) algorithm for the fractional Laplace operator. Calculating the error estimator leads to two problems. First, the function to be calculated contains a singularity and second, the error estimator consists of a double integral. Therefore, the computational effort is quadratic with a bad constant when employing classical quadrature techniques.The aim of this work is not only to provide fundamental knowledge regarding the fractional Laplace operator and FEM in general, but also to show an upper bound for the error estimator in one dimension that can be calculated in quasi-linear time. This is achieved by decomposition of the error estimator into a near-field and a far-field contribution, where the near-field is the integration around the singularity and the far field only contains smooth parts. For the near-field, we prove an analytical upper-bound, which can be computed in constant time. The far-field can be computed in quasi-linear time, employing the technique of hierarchical matrices.This work contains not only the proof of the upper bound for the error estimator but also a pseudocode for a possible implementation. Furthermore, the relevant theorems for the convergence rates of FEM algorithms are given and the associated proofs are sketched. Finally, the theoretical results are confirmed by numerical experiments. In particular, the experiments show that an adaptive FEM algorithm converges with the optimal rate, even tough it uses the upper bound of the error estimator instead of the original one.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
fractional diffusion
en
dc.subject
error estimation
en
dc.subject
adaptivity
en
dc.subject
Galerkin method
en
dc.title
Efficient realization of a residual-type error estimator for the fractional Laplacian
en
dc.title.alternative
Effiziente Realisierung eines residualen Fehlerschätzers für den fraktionalen Laplace Operator
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2021.93680
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Björn Bahr
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Faustmann, Markus
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing