<div class="csl-bib-body">
<div class="csl-entry">Cupak, C., Lopez-Cazalilla, A., Biber, H., Brötzner, J., Fellinger, M., Brandstätter, F., Szabo, P. S., Mutzke, A., Granberg, F., Nordlund, K., González-Arrabal, R., & Aumayr, F. (2023). Sputter yield reduction and fluence stability of numerically optimized nanocolumnar tungsten surfaces. <i>Physical Review Materials</i>, <i>7</i>(6), Article 06540601. https://doi.org/10.1103/PhysRevMaterials.7.065406</div>
</div>
-
dc.identifier.issn
2475-9953
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187069
-
dc.description.abstract
Nanocolumnar tungsten surfaces were investigated with numerical techniques regarding their potential to reduce sputtering by ion bombardment. We simulated a large number of different configurations with the SPRAY sputtering code to identify an optimal geometry. For the test case of 2 keV Ar+ irradiation, a specific configuration was found which led to a significant sputter yield reduction for all studied ion incidence angles. For example, reductions by ∼80% in comparison to the sputter yield values for a flat tungsten surface were observed during irradiation along the surface normal. These properties appear beneficial for application on first wall materials in nuclear fusion devices. The optimized surface was further investigated with the molecular dynamics code PARCAS and the binary-collision-approximation code SDTrimSP-3D, which supported the choice of this configuration. Furthermore, dynamic erosion simulations using SDTrimSP-3D were conducted, which predict a relatively long-lasting persistence of the sputter yield reduction if the structure is exposed to higher fluences.
en
dc.language.iso
en
-
dc.publisher
AMER PHYSICAL SOC
-
dc.relation.ispartof
Physical Review Materials
-
dc.subject
Nuclear Fusion
en
dc.subject
Plasma-wall-interaction
en
dc.subject
tungsten
en
dc.title
Sputter yield reduction and fluence stability of numerically optimized nanocolumnar tungsten surfaces
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Helsinki, Finland
-
dc.contributor.affiliation
University of California, Berkeley, United States of America (the)
-
dc.contributor.affiliation
Max Planck Institute for Plasma Physics, Germany
-
dc.contributor.affiliation
University of Helsinki, Finland
-
dc.contributor.affiliation
University of Helsinki, Finland
-
dc.contributor.affiliation
Universidad Politécnica de Madrid, Spain
-
dc.type.category
Original Research Article
-
tuw.container.volume
7
-
tuw.container.issue
6
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
M1
-
tuw.researchTopic.id
E3
-
tuw.researchTopic.name
Surfaces and Interfaces
-
tuw.researchTopic.name
Climate Neutral, Renewable and Conventional Energy Supply Systems
-
tuw.researchTopic.value
60
-
tuw.researchTopic.value
40
-
dcterms.isPartOf.title
Physical Review Materials
-
tuw.publication.orgunit
E134-03 - Forschungsbereich Atomic and Plasma Physics